csinf, csin, csinl
From cppreference.com
Defined in header
<complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header
<tgmath.h>
|
||
#define sin( z )
|
(4) | (since C99) |
1-3) Computes the complex sine of
z
.
4) Type-generic macro: If
z
has type long double complex, csinl
is called. if z
has type double complex, csin
is called, if z
has type float complex, csinf
is called. If z
is real or integer, then the macro invokes the corresponding real function (sinf, sin, sinl). If z
is imaginary, then the macro invokes the corresponding real version of the function sinh, implementing the formula sin(iy) = i sinh(y), and the return type of the macro is imaginary.
Contents |
[edit] Parameters
z | - | complex argument |
[edit] Return value
If no errors occur, the complex sine of z
.
Errors and special cases are handled as if the operation is implemented by -I * csinh(I*z)
[edit] Notes
The sine is an entire function on the complex plane, and has no branch cuts.
Mathematical definition of the sine is sin z =eiz -e-iz |
2i |
[edit] Example
Run this code
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = csin(1); // behaves like real sine along the real line printf("sin(1+0i) = %f%+fi ( sin(1)=%f)\n", creal(z), cimag(z), sin(1)); double complex z2 = csin(I); // behaves like sinh along the imaginary line printf("sin(0+1i) = %f%+fi (sinh(1)=%f)\n", creal(z2), cimag(z2), sinh(1)); }
Output:
sin(1+0i) = 0.841471+0.000000i ( sin(1)=0.841471) sin(0+1i) = 0.000000+1.175201i (sinh(1)=1.175201)
[edit] See also
(C99)(C99)(C99)
|
computes the complex cosine (function) |
(C99)(C99)(C99)
|
computes the complex tangent (function) |
(C99)(C99)(C99)
|
computes the complex arc sine (function) |
(C99)(C99)
|
computes sine (sin(x)) (function) |
C++ documentation for sin
|