cpowf, cpow, cpowl
From cppreference.com
Defined in header
<complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header
<tgmath.h>
|
||
#define pow( x, y )
|
(4) | (since C99) |
1-3) Computes the complex power function xy
, with branch cut for the first parameter along the negative real axis.
, with branch cut for the first parameter along the negative real axis.
4) Type-generic macro: If any argument has type long double complex,
cpowl
is called. if any argument has type double complex, cpow
is called, if any argument has type float complex, cpowf
is called. If the arguments are real or integer, then the macro invokes the corresponding real function (powf, pow, powl). If any argument is imaginary, the corresponding complex number version is called.
Contents |
[edit] Parameters
x, y | - | complex argument |
[edit] Return value
If no errors occur, the complex power xy
, is returned.
Errors and special cases are handled as if the operation is implemented by cexp(y*clog(x)), except that the implementation is allowed to treat special cases more carefully.
[edit] Example
Run this code
#include <stdio.h> #include <complex.h> int main(void) { double complex z = cpow(1.0+2.0*I, 2); printf("(1+2i)^2 = %.1f%+.1fi\n", creal(z), cimag(z)); double complex z2 = cpow(-1, 0.5); printf("(-1+0i)^0.5 = %.1f%+.1fi\n", creal(z2), cimag(z2)); double complex z3 = cpow(conj(-1), 0.5); // other side of the cut printf("(-1-0i)^0.5 = %.1f%+.1fi\n", creal(z3), cimag(z3)); double complex z4 = cpow(I, I); // i^i = exp(-pi/2) printf("i^i = %f%+fi\n", creal(z4), cimag(z4)); }
Output:
(1+2i)^2 = -3.0+4.0i (-1+0i)^0.5 = 0.0+1.0i (-1-0i)^0.5 = 0.0-1.0i i^i = 0.207880+0.000000i
[edit] See also
(C99)(C99)(C99)
|
computes the complex square root (function) |
(C99)(C99)
|
computes a number raised to the given power (xy) (function) |
C++ documentation for pow
|