ccosf, ccos, ccosl
From cppreference.com
Defined in header
<complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header
<tgmath.h>
|
||
#define cos( z )
|
(4) | (since C99) |
1-3) Computes the complex cosine of
z
.
4) Type-generic macro: If
z
has type long double complex, ccosl
is called. if z
has type double complex, ccos
is called, if z
has type float complex, ccosf
is called. If z
is real or integer, then the macro invokes the corresponding real function (cosf, cos, cosl). If z
is imaginary, then the macro invokes the corresponding real version of the function cosh, implementing the formula cos(iy) = cosh(y), and the return type is real.
Contents |
[edit] Parameters
z | - | complex argument |
[edit] Return value
If no errors occur, the complex cosine of z
is returned.
Errors and special cases are handled as if the operation is implemented by ccosh(I*z).
[edit] Notes
The cosine is an entire function on the complex plane, and has no branch cuts.
Mathematical definition of the cosine is cos z =eiz +e-iz |
2 |
[edit] Example
Run this code
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = ccos(1); // behaves like real cosine along the real line printf("cos(1+0i) = %f%+fi ( cos(1)=%f)\n", creal(z), cimag(z), cos(1)); double complex z2 = ccos(I); // behaves like real cosh along the imaginary line printf("cos(0+1i) = %f%+fi (cosh(1)=%f)\n", creal(z2), cimag(z2), cosh(1)); }
Output:
cos(1+0i) = 0.540302-0.000000i ( cos(1)=0.540302) cos(0+1i) = 1.543081-0.000000i (cosh(1)=1.543081)
[edit] See also
(C99)(C99)(C99)
|
computes the complex sine (function) |
(C99)(C99)(C99)
|
computes the complex tangent (function) |
(C99)(C99)(C99)
|
computes the complex arc cosine (function) |
(C99)(C99)
|
computes cosine (cos(x)) (function) |
C++ documentation for cos
|