WHAT 1S ALL
THIS cRAP?

3
I ﬁﬁ
AN

WHY 15 THIS WHERE couLD THI5 BRIDGE ,
RUCTU HERE 7 AD 7 THIS SIGN DOESN'T
T Pi 1BLY

5 RE HERE ¢ 0351BL E 7 ;

WHAT A HORRIBLY DESIGNED GOOD GOD! WHAT THE HELL
STREET, MOST INEFFICIENT. DOES THIS CONTRAPTION Do?

e
B S

N

| hate reading
other people’s code.

OBJECT-ORIENTED PROGRAMMING

Creational Design Patterns

Lecture #10

doc. Ing. Martin Tomasek, PhD.
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of KoSice

2025/2026

OBJECT-ORIENTED PROGRAMMING

Creational design patterns

* Abstract the instantiation process

* Plan for today
* Factory Method
* Abstract Factory
* Singleton
* Builder
* Prototype

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Creational design patterns

* Creational patterns abstract the instantiation process
* They control (hide) creation of objects and helps build systems independent from
creation and building of objects
* Creational patterns of classes use inheritance to decide what objects
should be created
* Factory Method, Prototype
» Creational patterns of objects delegates creation of objects to other
objects
* Abstract Factory, Builder

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Creational design patterns

 All OO languages include new command for an object
instantiation

* Creational patters allows us to write methods for objects
instantiation without direct usage of hew

* Methods can create various objects and can be
overridden/overloaded to create other new objects without
modification of code

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Factory Method

* Purpose
* Defines interface for creating objects and allows subclasses to
control the type of created objects

* Motivation

1
Document Application
p Docuemnt doc = createDocumenty();
:olpeno docs I reateDocumento docs.Add(doc):
+E ose() +newDocument() — + — — — 7 doc.open();
j::eer(l)() +openDocument()
MyDocuemnt MyApplication
; e return new MyDocument();
+open teD: ="
+close() For 0

* Method createDocument () represents Factory Method

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Factory Method

» Usage
* In case the class cannot assume what type of creating objects is
used
 Subclasses must specify the creation of objects

e Structure

Creator

Product

+factoryMethod()
+anOperation() - T —

1 i

ConcreteProduct ConcreteCreator
K--——————— return new ConcreteProduct();
+factoryMethod() + — —

i)”roduct = factoryMethod(); ﬁ

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Factory Method

* Participating parts
* Product — defines interface for object types that are created
* ConcreteProduct — implements Product interface

* Creator — declares factory method, which returns object of type
Product

* ConcreteCreator — overrides factory method and returns
instance of ConcretePorduct

* Collaboration of parts

* Creator depends on its subclasses that implements factory
method returning adequate instance of ConreteProduct

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Factory Method

* Class Creator is created without knowledge what
ConcreteProduct is instantiated. What
ConcreteProduct is instantiated is given by
corresponding ConcreteCreator subclass used in
application

* It does not mean the subclass decides during runtime what
concrete type is used!

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Factory Method

» Advantages

* Code is much more flexible and reusable thanks to avoidance of
direct instantiating of application specific objects

* Code works only with Product interface and can use any classes
ConcreteProduct, which implement this interface
* Implementation
* Creator can be either abstract or concrete class

* When factory method creates more types of objects, for example
input parameter distinct among them by if-else construction

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

* Purpose
* An interface of creating a group of related of dependent objects
without specifying they concrete classes

* Creation of objects is delegated to other objects using composition
and Factory Method is used for creation of concrete objects

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

* Motivation

WidgetFactory Client

+createScrollBar() Window B

+createWindow()

I —

MotifWidgetFactory PMWidgetFactory| =3 K- g
|

[[1

+createScroliBar() +createScrollBar() i
+createWindow() +createWindow() ;
I

A

ScrollBar

%

T
|
Zy
1
1
I

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

» Usage
* System should be independent of the way how its objects are
created
* Class cannot assume what classes are used for creating objects
» System must use only one group of related objects
* Objects of one group must be used together

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

* Structure
AbstractFactory Client
+createProductA() AbstractProductA M
+createProductB()
c 1] [c 2
ConcreteFactory1 ConcreteFactory2| - S
1 i
- -l |
+createProductA() i +createProductA() ! !
[roreateProductB() | 1 *createProduct8() | 1 !
| | AbstractProductB |
1 I |
1 ! T
1 | !
1 I !
| | !
1 | !
| |
: : —T :
1 e 1 c !
| | |
i K K-
| |
i |
i |
!]

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

* Participating parts
* AbstractFactory — interface declaring operations for creating
objects of abstract products

* ConcreteFactory — implements operations for creating concrete
objects

* AbstractProduct — interface of a product

* ConreteProduct — defines concrete product that is created by
concrete factory method; implements interface
AbstractProduct

* Client — uses only interfaces declared as abstcract
(AbstractFactory, AbstractProduct)

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

* Collaboration of parts

* Only single instance of ConcreteFactory is created (see pattern
Singleton) and it creates objects according concrete
implementation. For creting other types of products there must be
another instance of other ConcreteFactory

* Class AbstractFactory depends on implementation of factory
methods by its subclasses

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

» Advantages
* Isolates client from concrete implementation of classes

» Allows simple switch of product groups, because concrete factory
class implements creation of whole product group

 Enforces usage of one product group

* Implementation
* Typical implementation needs only single instance of factory class
* In this case pattern Singleton is used

* In case concrete factory class must create new types of products
(not included in abstract declaration), only one factory method
(with parameter) is implemented

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Singleton

* Purpose
 Allows creation single instance of a given class and allows global
access to it

* Motivation

» Sometimes we need just one single instance of the class

* For example, I want a single object to control and manage objects
of windows in the system

* We need an easy access to the object
* To ensure it cannot be created more than one objects of the class

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Singleton

e Structure

Singleton

-static uniquelnstance _
-aData return uniquelnstance;

|

+static getinstance() - - —
+anOperation()

» Advantages
» Controlled access to an explicit object
* Does not allow to create other instances

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Builder

* Purpose
* Separates construction (composition) process of a complex object
from its representation (structure)
* Motivation
* Situations in which we need to compose object from other objects
* We want to hide before client the implementation of object
composition
* We wand to support client by variability of composition of object
structure

Lecture #10: Creational Design Patterns

10

Builder

» Usage

to build)

by various concrete objects

Lecture #10: Creational Design Patterns

* Separate problem of object composition (from what to build) from
its construction (how to build) and from object representation (what

* Client accesses object construction by interface that is implemented

OBJECT-ORIENTED PROGRAMMING

Builder

e Structure

Director

-theBuilder

Builder

+Bpild() 1

\T

for each object in structure
switch by something from object
{
A : ...theBuilder.BuildPartA();
B : ... theBuilder.BuildPartB();

).‘ 5

+BuildPartA()
+BuildPartB()

ConcreteBuilder

+BuildPartA()
+BuildPartB()
+GetProduct()

Lecture #10: Creational Design Patterns

A
Product

OBJECT-ORIENTED PROGRAMMING

11

OBJECT-ORIENTED PROGRAMMING

Builder

* Participating parts
* Builder — abstract interface for creating parts of an object

* ConcreteBuilder — implements Builder and constructs
concrete type of Product (executes whole construction)

* Director — directs construction of structured object by builder
object implementing Builder (i.e. ConcreteBuilder); it does
not know the structure

* Product — represents building structured objects

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Builder

* Collaboration of parts

BuildPartA()

|
|
|
i
|
BuigParis) |
T
|

GetProduct() ; »

o

Lecture #10: Creational Design Patterns

12

OBJECT-ORIENTED PROGRAMMING

Prototype

* Purpose
* Objects are created by cloning prototype instances defining a single
interface
* Motivation

* When creating objects, we often cannot choose the type of the
instance

* Usage of Factory patterns requires rewriting whole factory mothod
after inheritance

* Creation of objects as copies of other objects without knowing their
actual classes

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Prototype

» Usage
* Structure of products has common interface that supports cloning
objects
* Client contains list of prototype objects used for cloning new
objects
* Client access objects (to clone them) only using common interface
without knowing actual classes of them

Lecture #10: Creational Design Patterns

13

OBJECT-ORIENTED PROGRAMMING

Prototype

e Structure

Client Prototype

prototype!

+Operation() 1 1 +Clone()

N

mojeP = prototype.Clone();

IConcretePrototype1 ConcretePrototype2,

+Clone() +Clone()

return copy of this return copy of this

Lecture #10: Creational Design Patterns

OBJECT-ORIENTED PROGRAMMING

Prototype

* Participating parts

* Prototype — abstract interface for creating objects, declares
abstract method Clone () of object cloning

* ConcretePrototype — implements Prototype and creates
copy of this concrete instance by rewriting Clone()

* Client —uses Prototype for creating new objects by method
Clone(), it does not need to know what ConcretePrototype is
used (sometimes called Prototype Manager and often implemented
by various Factory patterns)

Lecture #10: Creational Design Patterns

14

