
1

OBJECT-ORIENTED PROGRAMMING

Creational Design Patterns

Lecture #10

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2024/2025

2

OBJECT-ORIENTED PROGRAMMING

Creational design patterns

• Abstract the instantiation process

• Plan for today
• Factory Method
• Abstract Factory
• Singleton
• Builder
• Prototype

Lecture #10: Creational Design Patterns 3

OBJECT-ORIENTED PROGRAMMING

Creational design patterns

• Creational patterns abstract the instantiation process
• They control (hide) creation of objects and helps build systems independent from

creation and building of objects

• Creational patterns of classes use inheritance to decide what objects
should be created

• Factory Method, Prototype

• Creational patterns of objects delegates creation of objects to other
objects

• Abstract Factory, Builder

Lecture #10: Creational Design Patterns 4

3

OBJECT-ORIENTED PROGRAMMING

Creational design patterns

• All OO languages include new command for an object
instantiation

• Creational patters allows us to write methods for objects
instantiation without direct usage of new

• Methods can create various objects and can be
overridden/overloaded to create other new objects without
modification of code

Lecture #10: Creational Design Patterns 5

OBJECT-ORIENTED PROGRAMMING

Factory Method

• Purpose
• Defines interface for creating objects and allows subclasses to

control the type of created objects

• Motivation

• Method createDocument() represents Factory Method
Lecture #10: Creational Design Patterns 6

4

OBJECT-ORIENTED PROGRAMMING

Factory Method

• Usage
• In case the class cannot assume what type of creating objects is

used
• Subclasses must specify the creation of objects

• Structure

Lecture #10: Creational Design Patterns 7

OBJECT-ORIENTED PROGRAMMING

Factory Method

• Participating parts
• Product – defines interface for object types that are created
• ConcreteProduct – implements Product interface
• Creator – declares factory method, which returns object of type
Product

• ConcreteCreator – overrides factory method and returns
instance of ConcretePorduct

• Collaboration of parts
• Creator depends on its subclasses that implements factory

method returning adequate instance of ConreteProduct

Lecture #10: Creational Design Patterns 8

5

OBJECT-ORIENTED PROGRAMMING

Factory Method

• Class Creator is created without knowledge what
ConcreteProduct is instantiated. What
ConcreteProduct is instantiated is given by
corresponding ConcreteCreator subclass used in
application

• It does not mean the subclass decides during runtime what
concrete type is used!

Lecture #10: Creational Design Patterns 9

OBJECT-ORIENTED PROGRAMMING

Factory Method

• Advantages
• Code is much more flexible and reusable thanks to avoidance of

direct instantiating of application specific objects
• Code works only with Product interface and can use any classes
ConcreteProduct, which implement this interface

• Implementation
• Creator can be either abstract or concrete class
• When factory method creates more types of objects, for example

input parameter distinct among them by if-else construction

Lecture #10: Creational Design Patterns 10

6

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Purpose
• An interface of creating a group of related of dependent objects

without specifying they concrete classes
• Creation of objects is delegated to other objects using composition

and Factory Method is used for creation of concrete objects

Lecture #10: Creational Design Patterns 11

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Motivation

Lecture #10: Creational Design Patterns 12

7

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Usage
• System should be independent of the way how its objects are

created
• Class cannot assume what classes are used for creating objects
• System must use only one group of related objects
• Objects of one group must be used together

Lecture #10: Creational Design Patterns 13

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Structure

Lecture #10: Creational Design Patterns 14

8

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Participating parts
• AbstractFactory – interface declaring operations for creating

objects of abstract products
• ConcreteFactory – implements operations for creating concrete

objects
• AbstractProduct – interface of a product
• ConreteProduct – defines concrete product that is created by

concrete factory method; implements interface
AbstractProduct

• Client – uses only interfaces declared as abstcract
(AbstractFactory, AbstractProduct)

Lecture #10: Creational Design Patterns 15

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Collaboration of parts
• Only single instance of ConcreteFactory is created (see pattern

Singleton) and it creates objects according concrete
implementation. For creting other types of products there must be
another instance of other ConcreteFactory

• Class AbstractFactory depends on implementation of factory
methods by its subclasses

Lecture #10: Creational Design Patterns 16

9

OBJECT-ORIENTED PROGRAMMING

Abstract Factory

• Advantages
• Isolates client from concrete implementation of classes
• Allows simple switch of product groups, because concrete factory

class implements creation of whole product group
• Enforces usage of one product group

• Implementation
• Typical implementation needs only single instance of factory class
• In this case pattern Singleton is used
• In case concrete factory class must create new types of products

(not included in abstract declaration), only one factory method
(with parameter) is implemented

Lecture #10: Creational Design Patterns 17

OBJECT-ORIENTED PROGRAMMING

Singleton

• Purpose
• Allows creation single instance of a given class and allows global

access to it

• Motivation
• Sometimes we need just one single instance of the class
• For example, I want a single object to control and manage objects

of windows in the system
• We need an easy access to the object
• To ensure it cannot be created more than one objects of the class

Lecture #10: Creational Design Patterns 18

10

OBJECT-ORIENTED PROGRAMMING

Singleton

• Structure

• Advantages
• Controlled access to an explicit object
• Does not allow to create other instances

Lecture #10: Creational Design Patterns 19

OBJECT-ORIENTED PROGRAMMING

Builder

• Purpose
• Separates construction (composition) process of a complex object

from its representation (structure)

• Motivation
• Situations in which we need to compose object from other objects
• We want to hide before client the implementation of object

composition
• We wand to support client by variability of composition of object

structure

Lecture #10: Creational Design Patterns 20

11

OBJECT-ORIENTED PROGRAMMING

Builder

• Usage
• Separate problem of object composition (from what to build) from

its construction (how to build) and from object representation (what
to build)

• Client accesses object construction by interface that is implemented
by various concrete objects

Lecture #10: Creational Design Patterns 21

OBJECT-ORIENTED PROGRAMMING

Builder

• Structure

Lecture #10: Creational Design Patterns 22

+Build()

Director

+BuildPartA()

+BuildPartB()

Builder

1

-theBuilder

1

Product

+BuildPartA()
+BuildPartB()
+GetProduct()

ConcreteBuilder

for each object in structure
 switch by something from object
 {
 A : ...theBuilder.BuildPartA();
 B : ... theBuilder.BuildPartB();

 }

12

OBJECT-ORIENTED PROGRAMMING

Builder

• Participating parts
• Builder – abstract interface for creating parts of an object
• ConcreteBuilder – implements Builder and constructs

concrete type of Product (executes whole construction)
• Director – directs construction of structured object by builder

object implementing Builder (i.e. ConcreteBuilder); it does
not know the structure

• Product – represents building structured objects

Lecture #10: Creational Design Patterns 23

OBJECT-ORIENTED PROGRAMMING

Builder

• Collaboration of parts

Lecture #10: Creational Design Patterns 24

theClient theDirector theConcreteBuilder

new Director (theConcreteBuilder)

new ConcreteBuilder()

Build()

BuildPartA()

BuildPartB()

GetProduct()

13

OBJECT-ORIENTED PROGRAMMING

Prototype

• Purpose
• Objects are created by cloning prototype instances defining a single

interface

• Motivation
• When creating objects, we often cannot choose the type of the

instance
• Usage of Factory patterns requires rewriting whole factory mothod

after inheritance
• Creation of objects as copies of other objects without knowing their

actual classes

Lecture #10: Creational Design Patterns 25

OBJECT-ORIENTED PROGRAMMING

Prototype

• Usage
• Structure of products has common interface that supports cloning

objects
• Client contains list of prototype objects used for cloning new

objects
• Client access objects (to clone them) only using common interface

without knowing actual classes of them

Lecture #10: Creational Design Patterns 26

14

OBJECT-ORIENTED PROGRAMMING

Prototype

• Structure

Lecture #10: Creational Design Patterns 27

+Operation()

Client

...
mojeP = prototype.Clone();
...

+Clone()

Prototype

1 1

prototype

+C lone()

ConcretePrototype1

+Clone()

ConcretePrototype2

return copy of this return copy of this

OBJECT-ORIENTED PROGRAMMING

Prototype

• Participating parts
• Prototype – abstract interface for creating objects, declares

abstract method Clone() of object cloning
• ConcretePrototype – implements Prototype and creates

copy of this concrete instance by rewriting Clone()
• Client – uses Prototype for creating new objects by method
Clone(), it does not need to know what ConcretePrototype is
used (sometimes called Prototype Manager and often implemented
by various Factory patterns)

Lecture #10: Creational Design Patterns 28

