
1

OBJECT-ORIENTED PROGRAMMING

Exception Handling

Lecture #7

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2025/2026



2

OBJECT-ORIENTED PROGRAMMING

Approaches to error checking

• Ignore the possibility

• Handle the error where it occurs
• Easy to observe the error handling code
• Clutters the “real” code

• Exception handling in object-oriented languages
• Makes code clearer, more robust and fault-tolerant

Lecture #7: Exception Handling 3

OBJECT-ORIENTED PROGRAMMING

Common errors

• Failure of new to allocate requested memory (or other 
resources)

• Array index out of bounds

• Division by zero

• Function received invalid parameters

Lecture #7: Exception Handling 4



3

OBJECT-ORIENTED PROGRAMMING

Example: Array bounds

• What should happen when the program writes beyond the 
bounds of an array?

int a[10];
a[10] = 42;

Lecture #7: Exception Handling 5

OBJECT-ORIENTED PROGRAMMING

C/C++

• Checking is just a waste of execution time, we should trust 
the programmer not to make mistakes

#include <iostream>

using namespace std;

int main() {
char s[4];
int x = 9;

cin >> s;
cout << "s is: " << s << endl;
cout << "x is: " << x << endl;

}

Lecture #7: Exception Handling 6

> g++ bounds.cpp -o bounds
> ./bounds
Ma
s is: Ma
x is: 9
> ./bounds
Marti
s is: Marti
x is: 105
> ./bounds
Martin
s is: Martin
x is: 28265
> ./bounds
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
s is: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
x is: 1633771873
Segmentation fault (core dumped)

User input



4

OBJECT-ORIENTED PROGRAMMING

105 + (110  256) = 28265

What is going wrong?

Lecture #7: Exception Handling 7

'M'

'a'

'r'

't'

'i' = 105

s

x

return 
address

'M'

'a'

'r'

't'

'i' = 105

'n' = 110

s

x

return 
address

'a'

'a'

'a'

'a'

'a'

'a'

'a'

'a'

s

x

return 
address

'a'

When main return, execution jumps to the return address stored 
on the stack. But the input overwrote that return address!

OBJECT-ORIENTED PROGRAMMING

When things go really bad

• If persons entering input are clever, they can put what they 
want in the return address, and their own code after that 
jumps to!

• Buffer Overflow Attack
• Stack Smashing

• Example: Code Red exploited buffer overflow in Microsoft 
Internet Information Server (web server)

• Attacker sends excessively long request to web server, overflows 
buffer and puts virus code on stack

• About 50 % of all security problems are due to buffer 
overflows!

Lecture #7: Exception Handling 8



5

OBJECT-ORIENTED PROGRAMMING

Array bounds in Java

public class BoundsExample {
public static void main(String[] args) {

String fileName = args[0];
}

}

> javac BoundsExample.java

> java BoundsExample

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 
Index 0 out of bounds for length 0

at BoundsExample.main(BoundsExample.java:3)

Lecture #7: Exception Handling 9

OBJECT-ORIENTED PROGRAMMING

Exception handling

• Catch errors before they occur

• Well-suited for
• Synchronous events
• Recoverable errors
• Fatal errors

• Poorly-suited for
• Asynchronous events (unscripted events)
• Normal program control

Lecture #7: Exception Handling 10



6

OBJECT-ORIENTED PROGRAMMING

Synchronous and asynchronous

• Synchronous events
• Internal to the program
• “Divide by zero” and other data “corruption”

• Asynchronous events
• External to the program
• I/O (disk or network) completion

Lecture #7: Exception Handling 11

OBJECT-ORIENTED PROGRAMMING

Exceptions in Java

• Exception is an object that signifies that normal execution of 
the program has been interrupted in some way

• Something forbidden happened in the system
• Some programmer-specified conditions were violated

• Programmer can identify the code in which an exception can 
occur

• Represented by the try block

• Programmer can write a code to handle occurred exceptions
• Represented by the catch block

Lecture #7: Exception Handling 12



7

OBJECT-ORIENTED PROGRAMMING

Exceptions are thrown

• Exception object is “thrown” to the program
• When an exceptional situation occurs exception object is 

propagated to the program, so that it can be handled somehow, or 
the execution is stopped

• Implicit throwing
• The exceptional situation occurs in the system (either OS or virtual 

machine)
• The exception object is thrown to the program by the system

• Explicit throwing
• The programmer within a code can identify an exceptional situation
• The programmer writes a code to create an exception object and to 

throw it using throw command

Lecture #7: Exception Handling 13

OBJECT-ORIENTED PROGRAMMING

Exceptions are caught

• Thrown exception are “caught” by the program
• Caught exceptions can be handled

• The code where an exceptional situation can occur must 
appear in try block

• The code in try block is interrupted

• The exception is caught and handled using the code in 
catch block

• Interrupted code from try block continues in catch block written 
for the specific type (or supertype) of exception object

Lecture #7: Exception Handling 14



8

OBJECT-ORIENTED PROGRAMMING

Interruption of the method

• Exceptions are thrown in methods
• The execution of the method is interrupted
• If it is in try block, catch block can handle it

• What if the method does not like to handle an exception (or 
do not know how)?

• The method declares that this exception type (or its supertype) can 
be thrown further using keyword throws in its declaration

• Then the execution of the method is interrupted, and the uncaught 
exception object is thrown further to the caller method

• Later it can be either caught and handled or thrown further down 
the call stack

Lecture #7: Exception Handling 15

OBJECT-ORIENTED PROGRAMMING

How Java handles exceptions?

• After an exception is thrown, it is propagated down the call 
stack until a method is found that can handle it
public static void main(String[] args) {
A a = new A();
try {
a.f();

} catch (Exception e) {
// recovery operations here

}
}

public class A {
public void f() throws Exception {
g();

}
public void g() throws Exception {
throw new Exception();

}
}

Lecture #7: Exception Handling 16

g

f

main

Exception is 
thrown in g

Exception is 
caught in main

Exception is not 
handled in g, but it 
is propagated to f

Exception is not 
handled in f, but it is 
propagated to main



9

OBJECT-ORIENTED PROGRAMMING

Why using exceptions?

• Couldn’t we just return status flag from methods?
• It is common in C programming to return a status flag value (0 for success, 1 for 

failure status of the operation)
• Suitable only for procedures (they do not return any value, so the return value 

can be used as status flag)

• Exceptions have several advantages over the return flag method
• Error handling code is logically separated from the regular code

• This often results in a better formed code, without a bunch of tangled if-else
statements

• Exceptions are propagated down the call stack automatically
• To achieve the same functionality manually, a lot of extra work must be done

• Specialized error types can be introduced and grouped by inheritance

Lecture #7: Exception Handling 17

OBJECT-ORIENTED PROGRAMMING

Checked and unchecked exceptions

• Checked exceptions
• Subclasses of class Exception
• Must be caught or declared as thrown (even by the main method)
• Usually represent recoverable errors, e.g. if a file cannot be found, 

the application must not crash

• Unchecked exceptions
• Subclasses of Error and RuntimeException

• Somewhat confusing: RuntimeException is itself a subclass of 
Exception

• Must not be caught or declared
• Usually represent irrecoverable errors

• If a null pointer dereference occurs, in general recovery is impossible

Lecture #7: Exception Handling 18



10

OBJECT-ORIENTED PROGRAMMING

Information carried by an exception

• The type of an exception
• Good design practice to use different exception classes for different kinds of 

exceptional situations
• Polymorphic class hierarchy of exceptions

• Stack trace – the state of the call stack at the moment the exception 
was thrown

• Chain of methods and their “active” instructions
• The printStackTrace() method of Exception

• Any additional information
• E.g. a verbal explanatory message

• The getMessage() method of Exception

• Security implication: Can an attacker use exception type and stack 
trace information to gain insight in the part of the application code not 
accessible to the attacker directly?

Lecture #7: Exception Handling 19

OBJECT-ORIENTED PROGRAMMING

Rules for secure class design: validity 
checks
• Many methods have restrictions on validity of parameters

• E.g., object references often must not be null

• Many intermediate results can be checked for validity (sanity checks)

• If no validity checks are present, bad things can happen
• Execution of a method may fail unexpectedly
• A method may terminate without failure, but cause failure at some later point in 

the execution
• Etc.

• Use exceptions to implement validity checks
• Often IllegalArgumentException, IndexOutOfBoundsException, and 
NullPointerException

Lecture #7: Exception Handling 20



11

OBJECT-ORIENTED PROGRAMMING

Can throw NullPointerException

Can throw MyDbException

public interface Structure {
public Iterator parts();
public String getName();

}

public interface Part {
public String getName();

}

public void printStructure(Id id) {
Structure structure = new MyDbObject();
MyDbManager.loadById(structure, id);
System.out.println("Structure " + structure.getName() + " contains");
for (Iterator i = structure.parts(); i.hasNext(); ) {

Part part = (Part) i.next();
System.out.println("- " + part.getName());

}
}

Example

Lecture #7: Exception Handling 21

OBJECT-ORIENTED PROGRAMMING

May need to throw another exception here

public void printStructure(Id id) {
Structure structure = new MyDbObject();
try {

MyDbManager.loadById(structure, id);
System.out.println("Structure " + structure.getName() + " contains");
for (Iterator i = structure.parts(); i.hasNext();) {

Part part = (Part) i.next();
System.out.println("- " + part.getText());

}
} catch (MyDbException e1) {

System.out.println("Cannot load from database");
} catch (NullPointerException e2) {

System.out.println("- empty");
}

}

Example

Lecture #7: Exception Handling 22

May need to throw another exception here



12

OBJECT-ORIENTED PROGRAMMING

Should we throw an exception?

• It is one of those things that are easy in theory but hard in practice

• Theory: if a method is unable carry out its normal functionality, throw 
an exception

• Abnormal, exceptional situation

• Practice: much more difficult
• E.g.: should an attempt to read from a file after EOF is reached cause an 

exception to be thrown?
• In Java: depends on the input stream class

• Security: do not catch exceptions too eagerly in the trusted code
• If an exception leaves an object in an inconsistent state, it can be exploited by an 

attacker

Lecture #7: Exception Handling 23

OBJECT-ORIENTED PROGRAMMING

The finally part

• The finally part of the try-catch-finally block is 
guaranteed to be executed, whether an exception was thrown 
inside the try clause

• Executed after code in the try and catch clauses, but before any 
exception is thrown that would cause the catch clause to terminate

• What happens if an exception is thrown from the finally
clause?

• If an exception is supposed to be thrown at the same time also from 
the catch clause, it is ignored

• Usually a source of errors

• Avoid throwing exception from finally or at least avoid 
this when an exception can be thrown from catch

Lecture #7: Exception Handling 24



13

OBJECT-ORIENTED PROGRAMMING

Useful try-catch-finally code

public void createOrUpdate(Session session) {
Id id = session.getObjectId();
RunData data = session.getRunData();
MyDbObject object = new MyDbObject();
try {

MyDbManager.loadById(object, id);
MyLogManager.debug("Loaded from DB");

} catch (MyDbException e) {
object.setId(id);
MyLogManager.debug("New created");

} finally {
object.update(data);
MyDbManager.save(object);
MyLogManager.debug("Updated and saved to DB");

}
}

Lecture #7: Exception Handling 25

Object object is updated 
and saved to the database 
even if it is loaded in try
block or newly created in 
catch block

OBJECT-ORIENTED PROGRAMMING

Declaring new exception type

• Most programmers use existing exception classes from the 
Java API or from the third-party vendors

• If you do need to create an exception class, then you should 
extend the class Exception and specify three constructors

Lecture #7: Exception Handling 26



14

OBJECT-ORIENTED PROGRAMMING

Example
public class MyException extends Exception {
public MyException() { super(); }
public MyException(String message) { super(message); }
public MyException(Throwable cause) { super(cause); }

}

public class NonZero {
public NonZero(int number) throws MyException {
if (number == 0)
throw new MyException("The argument was zero");

}
public static void main(String[] args) {
try {
NonZero nz1 = new NonZero(1);
NonZero nz0 = new NonZero(0);

} catch (MyException e) {
System.out.println(e);

}
}

}
Lecture #7: Exception Handling 27

OBJECT-ORIENTED PROGRAMMING

public class MyException1 extends Exception {}

public class MyException2 extends Exception {}

public class MyException3 extends MyException2 {}

public class Class1 {

public static void main(String[] args) throws Exception {

try {

System.out.print(1);

f();

} catch (Exception x) {

throw new MyException2();

} finally {

System.out.print(2);

throw new MyException1();

}

}

private static void f() throws Exception {

try {

throw new MyException1();

} catch (Exception y) {

} finally {

System.out.print(3);

throw new Exception();

}

}

}

Lecture #7: Exception Handling 28

What is the correct output of the program?

a) 13Exception in thread main MyException2

b) 132Exception in thread main MyException1

c) 123Exception in thread main MyException2


