I DON'T GET
YOUR CODE.

WHAT ARE
THESE LINES
FOR?
i
RS B
|| : 3
L
A
=
Sz 1 1
I U A\
0
(g |
d
fe [L
I HAVE NO IDEA.
BUT IT DOES NOT
P WORK WITHOUT
4 w P THEM

THE ART OF PROGRAMMING = PART 2: KISS

OBJECT-ORIENTED PROGRAMMING

Exception Handling

Lecture #7

doc. Ing. Martin Tomasek, PhD.
Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of KoSice

2025/2026

OBJECT-ORIENTED PROGRAMMING

Approaches to error checking

* Ignore the possibility

* Handle the error where it occurs
* Easy to observe the error handling code
* Clutters the “real” code

* Exception handling in object-oriented languages
* Makes code clearer, more robust and fault-tolerant

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Common errors

* Failure of new to allocate requested memory (or other
resources)

* Array index out of bounds
* Division by zero

* Function received invalid parameters

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Example: Array bounds

* What should happen when the program writes beyond the
bounds of an array?

int a[10];
a[1e] = 42;

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

C/C++

* Checking is just a waste of execution time, we should trust
the programmer not to make mistakes

> g++ bounds.cpp -o bounds

#include <iostream> > ./bounds
Ma 9
using namespace std; x is: 9
> ./bounds
Marti
int main() { s is: Marti
x is: 105
char 5[4]; > ./bounds
int x = 9; Martin
s is: Martin
x is: 28265
cin >»> s; > ./bounds
. aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
cout << "s is: " << s << endl; s is: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

cout << "x is:

}

x is: 1633771873

X <L endl; Segmentation fault (core dumped)

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

What 1s going wrong?

™' L '3’

"3t '3 '3’
S 7 S 7 S 7

et e '3’

Tt e '3’

'i' = 105 "i' = 1e5 'a'

'n' = 110 ‘a'

X 7 X 7 .

a

'3

return return 'a'
address Maddress

105 + (1 10 - 256) = 28265 ‘When main return, execution jumps to the return address stored
on the stack. But the input overwrote that return address!

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

When things go really bad

* [f persons entering input are clever, they can put what they
want in the return address, and their own code after that
jumps to!

* Buffer Overflow Attack
 Stack Smashing

* Example: Code Red exploited buffer overflow in Microsoft
Internet Information Server (web server)
* Attacker sends excessively long request to web server, overflows
buffer and puts virus code on stack
* About 50 % of all security problems are due to buffer
overflows!

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Array bounds in Java

public class BoundsExample {
public static void main(String[] args) {
String fileName = args[9];
}

> javac BoundsExample.java
> java BoundsExample

Exception in thread "main" java.lang.ArrayIndexoutOfBoundsException:
Index 0 out of bounds for Tlength 0

at BoundsExample.main(BoundsExample.java:3)

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Exception handling

* Catch errors before they occur
» Well-suited for

* Synchronous events
* Recoverable errors
 Fatal errors

* Poorly-suited for
» Asynchronous events (unscripted events)
* Normal program control

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Synchronous and asynchronous

» Synchronous events
* Internal to the program
* “Divide by zero” and other data “corruption”

» Asynchronous events
 External to the program
* I/O (disk or network) completion

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Exceptions in Java

* Exception is an object that signifies that normal execution of
the program has been interrupted in some way
* Something forbidden happened in the system
» Some programmer-specified conditions were violated

* Programmer can identify the code in which an exception can
occur

* Represented by the try block

* Programmer can write a code to handle occurred exceptions
* Represented by the catch block

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Exceptions are thrown

* Exception object is “thrown” to the program
* When an exceptional situation occurs exception object is
propagated to the program, so that it can be handled somehow, or
the execution is stopped
* Implicit throwing
* The exceptional situation occurs in the system (either OS or virtual
machine)
* The exception object is thrown to the program by the system
* Explicit throwing
* The programmer within a code can identify an exceptional situation

* The programmer writes a code to create an exception object and to
throw it using throw command

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Exceptions are caught

» Thrown exception are “caught” by the program
* Caught exceptions can be handled
* The code where an exceptional situation can occur must
appear in try block
* The code in try block is interrupted
* The exception is caught and handled using the code in
catch block

* Interrupted code from try block continues in catch block written
for the specific type (or supertype) of exception object

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Interruption of the method

* Exceptions are thrown in methods
* The execution of the method is interrupted
« If it is in try block, catch block can handle it

* What if the method does not like to handle an exception (or
do not know how)?

* The method declares that this exception type (or its supertype) can
be thrown further using keyword throws in its declaration

* Then the execution of the method is interrupted, and the uncaught
exception object is thrown further to the caller method

* Later it can be either caught and handled or thrown further down
the call stack

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

How Java handles exceptions?

 After an exception is thrown, it is propagated down the call
stack until a method is found that can handle it

public static void main(String[] args) {
A a = new A();

try { Exceptionis
a.f();) thrown in g
} catch (Exception e) {
// recovery operations here Exception is not
, } +—— handled in g, but it
g is propagated to
£ 1
public class A { ~
PUIg)](.:;.c void f() throws Exception { main 's Exceptionis not
? l handled in f, but it is
public void g() throws Exception { propagated tomain

throw new Exception(); Exceptionis
caught inmain

Lecture #7: Exception Handling

Why using exceptions?

* Couldn’t we just return status flag from methods?

* Itis common in C programming to return a status flag value (0 for success, 1 for
failure status of the operation)

* Suitable only for procedures (they do not return any value, so the return value
can be used as status flag)

» Exceptions have several advantages over the return flag method

* Error handling code is logically separated from the regular code

* This often results in a better formed code, without a bunch of tangled if-else
statements

* Exceptions are propagated down the call stack automatically
* To achieve the same functionality manually, a lot of extra work must be done
* Specialized error types can be introduced and grouped by inheritance

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Checked and unchecked exceptions

* Checked exceptions
* Subclasses of class Exception
* Must be caught or declared as thrown (even by the main method)

 Usually represent recoverable errors, e.g. if a file cannot be found,
the application must not crash

* Unchecked exceptions

* Subclasses of Error and RuntimeException

* Somewhat confusing: RuntimeException is itself a subclass of
Exception

* Must not be caught or declared

* Usually represent irrecoverable errors
* Ifa null pointer dereference occurs, in general recovery is impossible

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Information carried by an exception

* The type of an exception

* Good design practice to use different exception classes for different kinds of
exceptional situations

* Polymorphic class hierarchy of exceptions
» Stack trace — the state of the call stack at the moment the exception
was thrown
* Chain of methods and their “active” instructions
* The printStackTrace() method of Exception
* Any additional information
* E.g. a verbal explanatory message
* The getMessage() method of Exception

* Security implication: Can an attacker use exception type and stack
trace information to gain insight in the part of the application code not
accessible to the attacker directly?

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Rules for secure class design: validity
checks

* Many methods have restrictions on validity of parameters
* E.g., object references often must not be null

* Many intermediate results can be checked for validity (sanity checks)

* If no validity checks are present, bad things can happen
» Execution of a method may fail unexpectedly

* A method may terminate without failure, but cause failure at some later point in
the execution

* Etc.

» Use exceptions to implement validity checks

* Often I1legalArgumentException, IndexOutOfBoundsException, and
NullPointerException

Lecture #7: Exception Handling

10

Example

public interface Structure {
public Iterator parts();
public String getName();

}

public interface Part {
public String getName();

}

public void printStructure
Structure structure

d)

OBJECT-ORIENTED PROGRAMMING

Can throw MyDbException

{

ew MyDbObject();

MyDbManager.loadById(structure, id);

System.out.println("Structure "
for (Iterator i = structure.part
Part part = (Part) i.next();
System.out.println("- " + part
}

}

+ structure.getName() +

contains");
s(); i.hasNext();) {

.ge

Can throw NullPointerException

Lecture #7: Exception Handling

Example

public void printStructure(Id id) {
Structure structure = new MyDbObj
try {
MyDbManager.loadById(structure,
System.out.println("Structure "

Part part = (Part) i.next();
System.out.println("- "
}

} catch (MyDbException el) {
System.out.println("Cannot load
} catc ointerException e2)
System.out.prin ");
¥

}

for (Iterator i = structure.parts(); i.hasNext();) {

+ part.getText());

OBJECT-ORIENTED PROGRAMMING

ect();

id);
+ structure.getName() +

contains");

from database");

{

May need to throw another exception here

May need to throw another exception here

Lecture #7: Exception Handling

11

OBJECT-ORIENTED PROGRAMMING

Should we throw an exception?

* It is one of those things that are easy in theory but hard in practice

* Theory: if a method is unable carry out its normal functionality, throw
an exception
* Abnormal, exceptional situation

* Practice: much more difficult

* E.g.: should an attempt to read from a file after EOF is reached cause an
exception to be thrown?
* InJava: depends on the input stream class

* Security: do not catch exceptions too eagerly in the trusted code

» If an exception leaves an object in an inconsistent state, it can be exploited by an
attacker

Lecture #7: Exception Handling

The finally part

* The finally part of the try-catch-finally block is
guaranteed to be executed, whether an exception was thrown
inside the try clause

* Executed after code in the try and catch clauses, but before any
exception is thrown that would cause the catch clause to terminate

* What happens if an exception is thrown from the finally
clause?

* If an exception is supposed to be thrown at the same time also from
the catch clause, it is ignored

* Usually a source of errors

* Avoid throwing exception from finally or at least avoid
this when an exception can be thrown from catch

Lecture #7: Exception Handling

12

OBJECT-ORIENTED PROGRAMMING

Useful try-catch-finally code

public void createOrUpdate(Session session) {

Id id = session.getObjectId();

RunData data = session.getRunData();

MyDbObject object = new MyDbObject();

try {

MyDbManager.loadById(object, id);
MyLogManager.debug("Loaded from DB");

} catch (MyDbException e) {
object.setId(id);
MyLogManager.debug("New created");

} finally {
object.update(data);
MyDbManager.save(object);
MyLogManager.debug("Updated and saved to DB");

Object object is updated
and saved to the database

even if it is loaded in try
block or newly created in

catch block

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

Declaring new exception type

* Most programmers use existing exception classes from the
Java API or from the third-party vendors

* If you do need to create an exception class, then you should
extend the class Exception and specify three constructors

Lecture #7: Exception Handling

13

OBJECT-ORIENTED PROGRAMMING

Example

public class MyException extends Exception {
public MyException() { super(); }
public MyException(String message) { super(message); }
public MyException(Throwable cause) { super(cause); }

}

public class NonZero {
public NonZero(int number) throws MyException {
if (number == 0)
throw new MyException("The argument was zero");
}
public static void main(String[] args) {
try {
NonZero nzl = new NonZero(1);
NonZero nz@ = new NonZero(®);
} catch (MyException e) {
System.out.println(e);

Lecture #7: Exception Handling

OBJECT-ORIENTED PROGRAMMING

public class MyExceptionl extends Exception {}
public class MyException2 extends Exception {}
public class MyException3 extends MyException2 {}
public class Classl {
public static void main(String[] args) throws Exception {
try {
System.out.print(1);
O
} catch (Exception x) {
throw new MyException2();
} finally {
System.out.print(2);
throw new MyExceptionl();
¥
¥
private static void f() throws Exception {
try {
throw new MyExceptionl();

q ?
} cateh (Exception y) { What is the correct output of the program?

} finally { . . . q
System.out.print(3); a) 13Exception in thread main MyException2
throw new Exception();

} b) 132Exception in thread main MyExceptionl

)
} c) 123Exception in thread main MyException2

Lecture #7: Exception Handling

14

