
1

OBJECT-ORIENTED PROGRAMMING

Behavioral Design Patterns

Lecture #12

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2024/2025

2

OBJECT-ORIENTED PROGRAMMING

Behavioral design patterns

• Deal with dynamic interactions between classes and objects

• Plan for today
• Chain of Responsibility
• Iterator
• Observer
• Strategy
• Visitor

Lecture #12: Behavioral Design Patterns 3

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility

• Purpose
• Prevent a direct connection between the request sender and the

recipient by creating a chain of objects processing the request

• Motivation
• Contextual help functionality in GUI
• The object that implements the help for a specific object (e.g. a

button) is not directly known
• We let the request pass through the entire chain of objects, from

which the correct one is determined and performs the
corresponding function

• Each object in the chain has a uniform interface for receiving the
request and a reference to the next object in the chain

Lecture #12: Behavioral Design Patterns 4

3

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility

• Motivation

Lecture #12: Behavioral Design Patterns 5

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility

• Usage
• When more than one object can service a request, and it is not

known which specific object it is
• When requests are based on a "serve or forward" model, where the

request is either served directly in the object or needs to be sent to
another object

• Implications
• By preventing a direct link between the sender and receiver of the

request, it allows for independent solutions
• Response is not guaranteed - a request can reach the end of the

chain without being served
• The chain of service objects can be created dynamically

Lecture #12: Behavioral Design Patterns 6

4

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility

• Structure

Lecture #12: Behavioral Design Patterns 7

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 1)

• Task
• Software system for security monitoring. The system has multiple

sensors (smoke, fire, motion, etc.) that transmit their status to a
central computer

• For each physical sensor, we create one instance of a sensor object
• Each object knows that a certain value generated by a sensor

represents some action, but the action itself also depends on data
other than the sensor (e.g., sensor location, data from other devices
located at the sensor location, etc.)

• We want a scalable solution that can be deployed in any
environment

Lecture #12: Behavioral Design Patterns 8

5

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 1)

• Solution
• We will use the Chain of Responsibility pattern
• We will create a hierarchical composition of sensor objects that

monitors a specific secured environment
• We will define environment objects (wall, room, floor, building) as

part of this hierarchical composition
• We will send the alarm generated by the sensor at the top of this

hierarchy and the corresponding composed object will perform the
action

Lecture #12: Behavioral Design Patterns 9

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

• Main component of the pattern is Handler interface with
one method handleRequest()

public interface Handler {
void handleRequest();

}

• What if we want to handle more request types?

Lecture #12: Behavioral Design Patterns 10

6

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

• Solution #1
• Extend Handler interface with more methods supporting more

request types

public interface Handler {
void handleHelp();
void handlePrint();
void handleFormat();

}

• In this solution each concrete handler implementation must handle
all request types

Lecture #12: Behavioral Design Patterns 11

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

• Example of concrete handler class

public class ConcreteHandler implements Handler {
private Handler successor;
public ConcreteHandler(Handler successor) {
this.successor = successor;

}
@Override
public void handleHelp() {
// Request for help is handled here

}
@Override
public void handlePrint() {
this.successor.handlePrint();

}
@Override
public void handleFormat() {
this.successor.handleFormat();

}
}

• When we want to add more request type handling later, we need to rewrite existing
classes!

Lecture #12: Behavioral Design Patterns 12

7

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

• Solution #2
• Each request type defines own handler interface

public interface HelpHandler {
void handleHelp();

}
public interface PrintHandler {

void handlePrint();
}
public interface FormatHandler {

void handleFormat();
}

• Now a concrete handler class can implement one or more handler interfaces as
needed and must have an object of the next object in the chain for each type of
request

Lecture #12: Behavioral Design Patterns 13

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

public class ConcreteHandler implements HelpHandler, PrintHandler, FormatHandler {
private HelpHandler helpSuccessor;
private PrintHandler printSuccessor;
private FormatHandler formatSuccessor;

public ConcreteHandler(HelpHandler helpSuccessor, PrintHandler printSuccessor,
FormatHandler formatSuccessor) {
this.helpSuccessor = helpSuccessor;
this.printSuccessor = printSuccessor;
this.formatSuccessor = formatSuccessor;

}

@Override
public void handleHelp() {
// Request for Help is handled here

}
// Forward other requests
@Override
public void handlePrint() { this.printSuccessor.handlePrint(); }
@Override
public void handleFormat() { this.formatSuccessor.handleFormat(); }

}

Lecture #12: Behavioral Design Patterns 14

8

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

• Solution #3
• Another possible solution is to have only one service interface

method that accepts the type of request being serviced as a
parameter (string, enumeration, reflection type, etc.)

public interface Handler {
void handleRequest(String request);

}

Lecture #12: Behavioral Design Patterns 15

OBJECT-ORIENTED PROGRAMMING

Chain of Responsibility (example 2)

• Concrete handler class is following
public class ConcreteHandler implements Handler {

private Handler successor;

public ConcreteHandler(Handler successor) {
this.successor = successor;

}

@Override
public void handleRequest(String request) {
if (request.equals("Help")) {
// Request for help is handled here

}
else {
// Forward other requests
this.successor.handle(request);

}
}

}

Lecture #12: Behavioral Design Patterns 16

9

OBJECT-ORIENTED PROGRAMMING

Iterator

• Purpose
• Provide sequential access (cursor) to aggregated objects (collection,

list) without knowing their representation
• Also called Cursor

• Motivation
• An aggregated object e.g. a list should provide a way to access

individual contained elements without exposing its structure
• It should provide different access methods
• It should provide multiple access for parallel processing
• We do not want to define these functions directly in the aggregated

object

Lecture #12: Behavioral Design Patterns 17

OBJECT-ORIENTED PROGRAMMING

Iterator

• Motivation example #1
• List with its cursor

• Typical client code
...
List list = new List();
...
ListIterator iterator = new ListIterator(list);
iterator.First();
while (!iterator.IsDone()) {
Object item = iterator.CurrentItem();
// Here we use selected item
iterator.Next();

}
...

Lecture #12: Behavioral Design Patterns 18

10

OBJECT-ORIENTED PROGRAMMING

Iterator

• Motivation example #2
• Polymorfic cursor

Lecture #12: Behavioral Design Patterns 19

OBJECT-ORIENTED PROGRAMMING

Iterator

• Typical client code
List list = new List();
SkipList skipList = new SkipList();
Iterator listIterator = list.CreateIterator();
Iterator skipListIterator = skipList.CreateIterator();
handleList(listIterator);
handleList(skipListIterator);
...
public void handleList(Iterator iterator) {
iterator.First();
while (!iterator.IsDone()) {
Object item = iterator.CurrentItem();
// Here we use selected item
iterator.Next();

}
}

Lecture #12: Behavioral Design Patterns 20

11

OBJECT-ORIENTED PROGRAMMING

Iterator

• Usage
• Accessing elements of an aggregate object without using its actual

structure
• Need for multiple (parallel) access to elements of an aggregate

object
• Provide a uniform interface for accessing elements (i.e.

polymorphic cursor)

Lecture #12: Behavioral Design Patterns 21

OBJECT-ORIENTED PROGRAMMING

Iterator

• Structure

Lecture #12: Behavioral Design Patterns 22

12

OBJECT-ORIENTED PROGRAMMING

Iterator

• Elements involved
• Iterator – defines an interface for sequential access to elements
• ConcreteIterator – implements the Iterator interface, maintains

state of the aggregated object
• Aggregate – defines an interface for creating a cursor object (using

Factory Method)
• ConcreteAggregate – implements the Aggregate interface and

creates a concrete cursor object

Lecture #12: Behavioral Design Patterns 23

OBJECT-ORIENTED PROGRAMMING

Iterator

• Advantages
• Simplifies the interface of an aggregate object by not including

methods for accessing its elements
• Supports multiple access
• Supports various cursor variants

Lecture #12: Behavioral Design Patterns 24

13

OBJECT-ORIENTED PROGRAMMING

Iterator

• Implementation
• Who controls the cursor traversal?

• Client – more flexible, also called “external cursor”
• Cursor itself – called “internal cursor”

• Who defines the traversal algorithm?
• Cursor – more general, easier if we want to have different cursor variants
• Aggregate object – cursor only keeps the state of the traversal

• Can the aggregate object be changed while the cursor is in use?
• If so, we also call it “robust cursor”

• Implementation of other operations such as Previous()?

Lecture #12: Behavioral Design Patterns 25

OBJECT-ORIENTED PROGRAMMING

Iterator (examples)

• Examples – see Java
• java.util.Enumeration
• java.util.Hashtable
• java.util.Collection
• java.util.Iterator
• java.util.LinkedList
• java.util.List
• java.util.ListIterator
• java.util.Vector
• ...

Lecture #12: Behavioral Design Patterns 26

14

OBJECT-ORIENTED PROGRAMMING

Observer

• Purpose
• Definition of a 1:N dependency between objects, if the state of an

object changes, all dependent objects are informed of it

• Motivation
• Need for consistency between dependent objects, without the need

for a tight coupling between them

Lecture #12: Behavioral Design Patterns 27

OBJECT-ORIENTED PROGRAMMING

Observer

• Motivation

Lecture #12: Behavioral Design Patterns 28

15

OBJECT-ORIENTED PROGRAMMING

Observer

• Usage
• Flexible implementation of dependencies between objects on their

state
• When changing one object should cause another object to change
• When an object should inform other objects about its state without

knowing these objects

Lecture #12: Behavioral Design Patterns 29

OBJECT-ORIENTED PROGRAMMING

Observer

• Structure

Lecture #12: Behavioral Design Patterns 30

16

OBJECT-ORIENTED PROGRAMMING

Observer

• Elements involved
• Subject – maintains information about dependent objects, provides an interface

for inserting and removing dependent objects
• Observer – interface for implementing state change notifications
• ConcreteSubject – a concrete class of the observed object, implements
Subject and maintains references to ConcreteObservers, which notify
about the change via the Observer interface

• ConcreteObserver – a concrete class of the observing (dependent) object, its
state is consistent with the state of the observed object, implements Observer
and performs a change of its state after the notification is executed by the
ConcreteSubject

Lecture #12: Behavioral Design Patterns 31

OBJECT-ORIENTED PROGRAMMING

Observer

• Cooperation

Lecture #12: Behavioral Design Patterns 32

17

OBJECT-ORIENTED PROGRAMMING

Observer

• Advantages
• Minimal coupling between the monitored and dependent objects

• Possibility of extending the monitored object without having to change the
dependent objects

• Adding dependent objects without having to change the monitored object
• The monitored object only knows the list of dependent objects (not specific

objects) and their interface for executing the notification
• The monitored object and dependent objects can belong to different

abstractions
• Support for event distribution

• The monitored object distributes a notification (event) to registered
dependent objects

• Dependent objects can freely register and unregister in the monitored object

Lecture #12: Behavioral Design Patterns 33

OBJECT-ORIENTED PROGRAMMING

Observer

• Disadvantages
• Possibility of cascading object notifications

• Dependent objects are usually unaware of each other and their actions may
not be consistent with other dependent objects

• Simple notification interface can make it difficult for dependent
objects to distinguish which monitored object has actually changed

Lecture #12: Behavioral Design Patterns 34

18

OBJECT-ORIENTED PROGRAMMING

Observer

• Implementation
• How does a monitored object maintain a set of dependent objects?

• Array, link list, etc.

• What if a dependent object wants to monitor multiple entities?
• The monitored object must identify itself when notifying a dependent object

• Who performs a state change on a dependent object?
• The monitored object at each notification
• The dependent object itself, e.g. when changing multiple states
• Another object outside the given structure

• Before the monitored object performs a notification, it must perform a state
change

• How much information should the monitored object send to the dependent
objects when notified?

• Push architecture – send all necessary information
• Pull architecture – only identification, the monitored object requests (pulls) what it needs later

Lecture #12: Behavioral Design Patterns 35

OBJECT-ORIENTED PROGRAMMING

Observer

• Implementation
• Can a dependent object only register for specific events?

• If so, is this a publish-register model?
• Can a dependent object also be a monitored object?

• In principle, yes
• What if a dependent object only wants to be notified when the state

of multiple monitored objects changes?
• Using a mediator object (Mediator pattern)
• A monitored object only notifies the mediator object, which performs the

necessary operations before notifying the dependent objects themselves

Lecture #12: Behavioral Design Patterns 36

19

OBJECT-ORIENTED PROGRAMMING

Observer (example 1)

• Typical usage
• Model-View-Controller (MVC) software architecture

• Model – data processed by the application (observed objects)
• View – presentation logic of the application that monitors data changes and

presents results to the user
• Controller – business logic of the application that causes the state of objects

to change

• MVC is the basis for OO frameworks for both web and desktop
applications (Swing, Django, ASP.NET, etc.)

Lecture #12: Behavioral Design Patterns 37

OBJECT-ORIENTED PROGRAMMING

Observer (example 2)

• Common implementation in Jave
• java.util.Observer
• java.util.Observable

Lecture #12: Behavioral Design Patterns 38

20

OBJECT-ORIENTED PROGRAMMING

Strategy

• Purpose
• Defines a group of similar algorithms (functions) that are

encapsulated together and can be interchanged
• This pattern allows for varying usage of these algorithms by clients

• Motivation

Lecture #12: Behavioral Design Patterns 39

OBJECT-ORIENTED PROGRAMMING

Strategy

• Usage
• Related classes differ only in their behavior
• We need different variants of some algorithm
• The algorithm uses data that the client should not know about

(Strategy can be used if we want to hide complex specific data
structures of the algorithm)

• The class defines many functions, and their execution is conditional
• Instead of defining multiple conditional operations, it is better to

define each such function in a separate class

Lecture #12: Behavioral Design Patterns 40

21

OBJECT-ORIENTED PROGRAMMING

Strategy

• Structure

Lecture #12: Behavioral Design Patterns 41

OBJECT-ORIENTED PROGRAMMING

Strategy

• Advantages
• Provides an alternative to inheritance, where a Context can contain

different variations of algorithms or behavior
• Eliminates large conditional functions
• Provides the ability to choose an implementation for the same

function

Lecture #12: Behavioral Design Patterns 42

22

OBJECT-ORIENTED PROGRAMMING

Strategy (example 1)

• The class wants to decide during execution which array
sorting algorithm to use

• The solution is to encapsulate each algorithm in a separate
class using the Strategy pattern

Lecture #12: Behavioral Design Patterns 43

OBJECT-ORIENTED PROGRAMMING

Strategy (example 2)

• A GUI object composed of other GUI components wants to
decide which strategy to use for layout on the screen

• The solution is to encapsulate the different layout strategies
into a separate class using the Strategy pattern

Lecture #12: Behavioral Design Patterns 44

23

OBJECT-ORIENTED PROGRAMMING

Strategy (example 3)

• A GUI component wants to decide how to validate the
correctness of the input data entered by the user (numeric
data, text, phone number)

• The solution is to encapsulate different data validation
strategies into a single object using the Strategy pattern

Lecture #12: Behavioral Design Patterns 45

OBJECT-ORIENTED PROGRAMMING

Visitor

• Purpose
• Representation of an operation to be performed on each element of

a structure, allows to extend operations without interfering with the
structure of the elements

• Motivation
• The compiler, which reads the source text of the program, creates

an abstract syntax tree from it, this tree has various nodes
(assignment, variable, expression)

• Operations that we want to perform on the nodes
• Check whether all used variables are defined
• Check initialization of variables before their first use
• Check type of variable (expression)
• Generate (machine) code

Lecture #12: Behavioral Design Patterns 46

24

OBJECT-ORIENTED PROGRAMMING

Visitor

• Motivation
• Each of these operations is performed differently on different nodes
• One way to do this is to create a dependent node structure (through

inheritance)

Lecture #12: Behavioral Design Patterns 47

OBJECT-ORIENTED PROGRAMMING

Visitor

• Motivation
• Problems

• Adding a new operation requires changing the entire node structure
• It is not clear to define operations directly in each node

• Another approach is to define all operations in a special object
called a "visitor", which will visit each node of the structure and the
node will use it to perform the given operations according to its
type

Lecture #12: Behavioral Design Patterns 48

25

OBJECT-ORIENTED PROGRAMMING

Visitor

• Usage
• If we need to perform many different and independent operations

on each element of some object structure
• If the object structure does not change, but the operations

performed on the elements of the object structure do change
(otherwise it is better to define operations directly with objects)

• If the object structure contains many classes with different
interfaces and the operation execution depends on the type of each
element of the object structure

Lecture #12: Behavioral Design Patterns 49

OBJECT-ORIENTED PROGRAMMING

Visitor

• Structure

Lecture #12: Behavioral Design Patterns 50

26

OBJECT-ORIENTED PROGRAMMING

Visitor

• Components cooperation

Lecture #12: Behavioral Design Patterns 51

OBJECT-ORIENTED PROGRAMMING

Visitor

• Advantages
• Adding a new operation is easy
• Related operations are not spread across different classes, they are

localized in one object, unrelated ones are spread across derived
classes

• Visitor object can maintain state of operations execution while
traversing the entire object structure

• Disadvantages
• Adding a new ConcreteElement is difficult, requires a new

abstract operation in Visitor and implementation of
ConcreteVisitor

• ConcreteElement must have a very strong interface, sometimes
it is necessary to break encapsulation to get the internal state of the
object

Lecture #12: Behavioral Design Patterns 52

27

OBJECT-ORIENTED PROGRAMMING

Visitor (example)

• Combining Composite and Visitor patterns

• Definition of abstract component of a composite

public abstract class Component {
private String name;
public Component(String name) { this.name = name; }
public String getName() { return this.name; }
public void setName(String name) { this.name = name; }
public abstract double getPrice();
public abstract void accept(ComponentVisitor v);

}

Lecture #12: Behavioral Design Patterns 53

OBJECT-ORIENTED PROGRAMMING

Visitor (example)

• Definition of concrete component

public class Widget extends Component {
private double price;
public Widget(String name, double price) {
super(name);
this.price = price;

}
public void setPrice(double price) { this.price = price; }
@Override
public double getPrice() { return this.price; }
@Override
public void accept(ComponentVisitor v) { v.visit(this); }

}

Lecture #12: Behavioral Design Patterns 54

28

OBJECT-ORIENTED PROGRAMMING

Visitor (example)
• Definition of concrete composite

public class WidgetAssembly extends Component {
private List<Component> components;
public WidgetAssembly(String name) {

super(name);
this.components = new LinkedList<>();

}
public void addComponent(Component c) {

this.components.add(c);
}
public void removeComponent(Component c) {

this.components.remove(c);
}
@Override
public double getPrice() {

double totalPrice = 0.0;
for (Component c : this.components)

totalPrice += c.getPrice();
return totalPrice;

}
@Override
public void accept(ComponentVisitor v) { v.visit(this); }

}

Lecture #12: Behavioral Design Patterns 55

OBJECT-ORIENTED PROGRAMMING

Visitor (example)

• Interface of visitor object

public interface ComponentVisitor {
void visit(Widget w);
void visit(WidgetAssembly wa);

}

• If the structure of the composite changes, we also need to
add a new visit() operation

Lecture #12: Behavioral Design Patterns 56

29

OBJECT-ORIENTED PROGRAMMING

Visitor (example)

• Implementing a simple visiting object operation (just lists
which element was visited)

public class SimpleVisitor implements ComponentVisitor {
@Override
public void visit(Widget w) {

System.out.println("Visiting Widget");
}
@Override
public void visit(WidgetAssembly wa) {

System.out.println("Visiting WidgetAssembly");
}

}

Lecture #12: Behavioral Design Patterns 57

OBJECT-ORIENTED PROGRAMMING

Visitor (example)
• Another visitor object implementation for comparing prices of elements

public class PriceVisitor implements ComponentVisitor {
private double maxPrice;
public PriceVisitor(double maxPrice) { this.maxPrice = maxPrice; }
@Override
public void visit(Widget w) {

double price = w.getPrice();
if (price > this.maxPrice)

System.out.println("Do not buy! Widget price " + price + " exceeds max price (" + this.maxPrice
+ ").");
else

System.out.println("Buy! Widget price " + price + " is lower than max price (" + this.maxPrice
+ ").");
}
@Override
public void visit(WidgetAssembly wa) {

double price = wa.getPrice();
if (price > this.maxPrice)

System.out.println("Do not buy! WidgetAssembly price " + price + " exceeds pax price (" +
this.maxPrice + ").");
else

System.out.println("Buy! WidgetAssembly price " + price + " is lowed than max price (" +
this.maxPrice + ").");
}

}

Lecture #12: Behavioral Design Patterns 58

30

OBJECT-ORIENTED PROGRAMMING

Visitor (example)
• Test program

public class VisitorTest {
public static void main(String[] args) {
Widget w1 = new Widget("Widget1", 10.0);
Widget w2 = new Widget("Widget2", 20.0);
WidgetAssembly wa = new WidgetAssembly("Assembly");
wa.addComponent(w1);
wa.addComponent(w2);
SimpleVisitor sv = new SimpleVisitor();
w1.accept(sv);
w2.accept(sv);
wa.accept(sv);
PriceVisitor pv = new PriceVisitor(25.0);
w1.accept(pv);
w2.accept(pv);
wa.accept(pv);

}
}

Lecture #12: Behavioral Design Patterns 59

OBJECT-ORIENTED PROGRAMMING

Visitor (example)

• Output of the program

Visiting Widget

Visiting Widget

Visiting WidgetAssembly

Buy! Widget price 10.0 is lower than max price (25.0).

Buy! Widget price 20.0 is lower than max price (25.0).

Do not buy! WidgetAssembly price 30.0 exceeds max price (25.0).

Lecture #12: Behavioral Design Patterns 60

