
1

OBJECT-ORIENTED PROGRAMMING

Structural Design Patterns

Lecture #11

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2024/2025



2

OBJECT-ORIENTED PROGRAMMING

Structural design patterns

• Deal with decoupling interface and implementation of 
classes and objects

• Plan for today
• Adapter
• Composite
• Decorator
• Facade
• Proxy

Lecture #11: Structural Design Patterns 3

OBJECT-ORIENTED PROGRAMMING

Adapter

• Purpose
• Conversion of interface of the object to another interface used by 

the client

• Motivation
• Sometimes we cannot use library classes because they have 

incompatible interface
• We cannot change the interface because there is no source code
• We often cannot change interface because of other compatibility

Lecture #11: Structural Design Patterns 4



3

OBJECT-ORIENTED PROGRAMMING

Adapter

• Motivation

Lecture #11: Structural Design Patterns 5

OBJECT-ORIENTED PROGRAMMING

Adapter

• Structure (1st version)
• Adapter class uses multiple inheritance (or multiple interfaces) to 

join both interfaces

Lecture #11: Structural Design Patterns 6



4

OBJECT-ORIENTED PROGRAMMING

Adapter

• Structure (2nd version)
• Adapter object is using composition of objects

Lecture #11: Structural Design Patterns 7

OBJECT-ORIENTED PROGRAMMING

Adapter

• Implementation issues
• How much adaptation is needed?

• Conversion of simple interfaces where we only need to rename operations
• Implementation of completely different set of operations

• Does adapter support two-way transparency?
• Adapter with two-way transparency implements both interfaces (Target

and Adaptee)
• Adapter can play both Target and Adaptee roles

Lecture #11: Structural Design Patterns 8



5

OBJECT-ORIENTED PROGRAMMING

Composite

• Purpose
• To compose the objects into a tree structures to represent 

hierarchies of objects
• Allows clients to manage composed object uniformly – recursive 

composition

• Motivation

Lecture #11: Structural Design Patterns 9

OBJECT-ORIENTED PROGRAMMING

Composite

• Usage
• When we want to represent hierarchies of objects
• When clients want to treat composed object the same way as 

individual objects inside the composition

• Structure

Lecture #11: Structural Design Patterns 10



6

OBJECT-ORIENTED PROGRAMMING

Composite

• Advantages
• It is easy to add new types of components
• We can implement simple clients that do not need to distinct 

between composed objects and components

• Implementation issues
• Sometimes it is good to implement a reference to the parent object 

– it allows to apply Chain of Responsibility design pattern
• Two approaches to implement add(), remove(), getChild()

methods
• Transparent – inside class Component, which allows composed object and 

component use the same interface
• Safe – inside class Composite, which does not allow clients to use 

components the same way as composed objects

Lecture #11: Structural Design Patterns 11

OBJECT-ORIENTED PROGRAMMING

Composite

• Transparent implementation

• Safe implementation

Lecture #11: Structural Design Patterns 12



7

OBJECT-ORIENTED PROGRAMMING

Composite

• Implementation issues
• List of components is implemented in class Composite and not in 

class Component (leaf objects do not need to implement the lists)
• Sorting of components is given by the actual application
• When the OO language does not support garbage collection, we 

have to delete unused component objects from the memory
• Implementation of the composition (list) is given by the actual 

application (array, linked list, etc.)

Lecture #11: Structural Design Patterns 13

OBJECT-ORIENTED PROGRAMMING

Decorator

• Purpose
• To dynamically add new functionality to an object. This is flexible alternative to 

class inheritance

• Motivation
• When working with document object, we want to add more (GUI) functionality 

e.g. frame, scrollers. We cannot use inheritance; we want it dynamically during 
run-time

Lecture #11: Structural Design Patterns 14



8

OBJECT-ORIENTED PROGRAMMING

Decorator

Lecture #11: Structural Design Patterns 15

OBJECT-ORIENTED PROGRAMMING

Decorator

• Usage
• When we want to add new functionality to the object dynamically 

without its modification
• Implementation using inheritance is not practical, because we often 

have to add many various extensions which leads to many various 
subclasses. Definitions of such classes are usually hidden, and we 
cannot derive a new subclass

Lecture #11: Structural Design Patterns 16



9

OBJECT-ORIENTED PROGRAMMING

Decorator

• Structure

Lecture #11: Structural Design Patterns 17

OBJECT-ORIENTED PROGRAMMING

Decorator – Example

• IO classes in Java use Decorator design pattern

• Core IO classes are InputStream, OutputStream, Reader and Writer which 
implement only basic IO functionality

• We want to add more functionality to simple IO streams
• Buffered stream – additional buffer functionality to the IO stream
• Data stream – additional operations which work with Java basic types within the IO 

stream
• Pushback stream – additional functionality that allows revert IO operations in the IO 

stream

• We do not want to modify core IO classes, instead of that we use Decorator design 
pattern to add a new functionality

• Java calls them filters
• For example: BufferedInputStream, DataInputStream, PushbackInputStream, 

etc. 
• Their constructors need object of InputStreamwhich is then decorated by new functionality

Lecture #11: Structural Design Patterns 18



10

OBJECT-ORIENTED PROGRAMMING

Facade

• Purpose
• Defines a single (simple) interface for a set of interfaces from a 

subsystem

• Motivation
• Structuring a system to subsystems reduces the complexity
• Subsystems are usually groups of classes or groups of classes and 

other subsystems
• Interface combining all interfaces of the subsystem can be very 

complex (almost unusable)

Lecture #11: Structural Design Patterns 19

OBJECT-ORIENTED PROGRAMMING

Facade

• Usage
• When we want to present simple interface of a complex 

subsystem. This new interface will be sufficient for most clients, 
other (sophisticated) clients can still go deeper “behind the facade”

• When we need to hide the interfaces of some subsystem against 
clients or other subsystems. This improves independency and 
portability of the subsystem

Lecture #11: Structural Design Patterns 20



11

OBJECT-ORIENTED PROGRAMMING

Facade

• Structure

Lecture #11: Structural Design Patterns 21

OBJECT-ORIENTED PROGRAMMING

Facade

• Advantages
• Hides implementation of the subsystem against clients, which 

makes it simpler to use the subsystem
• Weakens binding among subsystems, which allows flexible 

modification (or change) of subsystems without impacts to the 
clients

• Reduces compilation effort in large software systems
• Simplifies the portability of subsystems
• Sophisticated clients can still access the whole subsystem
• This pattern does not support any functionality it just reduces 

existing interface

Lecture #11: Structural Design Patterns 22



12

OBJECT-ORIENTED PROGRAMMING

Proxy

• Purpose
• Presents proxy object which manages access to (usage of) another 

object

• Motivation
• There are situations when clients cannot use (refer to) an object 

directly
• Proxy object can act as a broker between the client and the original 

object

Lecture #11: Structural Design Patterns 23

OBJECT-ORIENTED PROGRAMMING

Proxy

• Usage
• Proxy object has the same interface as an original object
• Proxy object keeps the reference (any type of referencing) to an 

original object and forwards the requests from the client to the 
original object – delegated execution

• Proxy object is allowed to act on behalf of the client with the 
original object

• Proxy object is useful whenever there is a need for more complex 
connection (e.g. remote access) to the original object than a simple 
object reference

Lecture #11: Structural Design Patterns 24



13

OBJECT-ORIENTED PROGRAMMING

Proxy

• Proxy object types
• Remote proxy – reference to an object in different address space or different 

computer
• Virtual proxy – original object is created only when it is needed
• Copy-on-write proxy – postpone the copy of original object until the action is 

performed (variation of virtual proxy)
• Protection (access) proxy – provides the security levels of the clients to access 

the original object
• Cache proxy – temporary object keeps results of time-consuming operations of 

original object for the clients
• Firewall proxy – secures access to the object against malicious clients
• Synchronization proxy – manages multiple (concurrent) access to the object
• Smart reference proxy – performs additional operations when referring to 

original object

Lecture #11: Structural Design Patterns 25

OBJECT-ORIENTED PROGRAMMING

Proxy

• Structure

Lecture #11: Structural Design Patterns 26


