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OBJECT-ORIENTED PROGRAMMING

Structural design patterns

• Deal with decoupling interface and implementation of 
classes and objects

• Plan for today
• Adapter
• Composite
• Decorator
• Facade
• Proxy
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Adapter

• Purpose
• Conversion of interface of the object to another interface used by 

the client

• Motivation
• Sometimes we cannot use library classes because they have 

incompatible interface
• We cannot change the interface because there is no source code
• We often cannot change interface because of other compatibility
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Adapter

• Motivation
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Adapter

• Structure (1st version)
• Adapter class uses multiple inheritance (or multiple interfaces) to 

join both interfaces
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Adapter

• Structure (2nd version)
• Adapter object is using composition of objects
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Adapter

• Implementation issues
• How much adaptation is needed?

• Conversion of simple interfaces where we only need to rename operations
• Implementation of completely different set of operations

• Does adapter support two-way transparency?
• Adapter with two-way transparency implements both interfaces (Target

and Adaptee)
• Adapter can play both Target and Adaptee roles
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Composite

• Purpose
• To compose the objects into a tree structures to represent 

hierarchies of objects
• Allows clients to manage composed object uniformly – recursive 

composition

• Motivation
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Composite

• Usage
• When we want to represent hierarchies of objects
• When clients want to treat composed object the same way as 

individual objects inside the composition

• Structure

Lecture #11: Structural Design Patterns 10



6

OBJECT-ORIENTED PROGRAMMING

Composite

• Advantages
• It is easy to add new types of components
• We can implement simple clients that do not need to distinct 

between composed objects and components

• Implementation issues
• Sometimes it is good to implement a reference to the parent object 

– it allows to apply Chain of Responsibility design pattern
• Two approaches to implement add(), remove(), getChild()

methods
• Transparent – inside class Component, which allows composed object and 

component use the same interface
• Safe – inside class Composite, which does not allow clients to use 

components the same way as composed objects
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Composite

• Transparent implementation

• Safe implementation
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Composite

• Implementation issues
• List of components is implemented in class Composite and not in 

class Component (leaf objects do not need to implement the lists)
• Sorting of components is given by the actual application
• When the OO language does not support garbage collection, we 

have to delete unused component objects from the memory
• Implementation of the composition (list) is given by the actual 

application (array, linked list, etc.)
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Decorator

• Purpose
• To dynamically add new functionality to an object. This is flexible alternative to 

class inheritance

• Motivation
• When working with document object, we want to add more (GUI) functionality 

e.g. frame, scrollers. We cannot use inheritance; we want it dynamically during 
run-time
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Decorator
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Decorator

• Usage
• When we want to add new functionality to the object dynamically 

without its modification
• Implementation using inheritance is not practical, because we often 

have to add many various extensions which leads to many various 
subclasses. Definitions of such classes are usually hidden, and we 
cannot derive a new subclass
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Decorator

• Structure
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Decorator – Example

• IO classes in Java use Decorator design pattern

• Core IO classes are InputStream, OutputStream, Reader and Writer which 
implement only basic IO functionality

• We want to add more functionality to simple IO streams
• Buffered stream – additional buffer functionality to the IO stream
• Data stream – additional operations which work with Java basic types within the IO 

stream
• Pushback stream – additional functionality that allows revert IO operations in the IO 

stream

• We do not want to modify core IO classes, instead of that we use Decorator design 
pattern to add a new functionality

• Java calls them filters
• For example: BufferedInputStream, DataInputStream, PushbackInputStream, 

etc. 
• Their constructors need object of InputStreamwhich is then decorated by new functionality
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Facade

• Purpose
• Defines a single (simple) interface for a set of interfaces from a 

subsystem

• Motivation
• Structuring a system to subsystems reduces the complexity
• Subsystems are usually groups of classes or groups of classes and 

other subsystems
• Interface combining all interfaces of the subsystem can be very 

complex (almost unusable)
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Facade

• Usage
• When we want to present simple interface of a complex 

subsystem. This new interface will be sufficient for most clients, 
other (sophisticated) clients can still go deeper “behind the facade”

• When we need to hide the interfaces of some subsystem against 
clients or other subsystems. This improves independency and 
portability of the subsystem
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Facade

• Structure
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Facade

• Advantages
• Hides implementation of the subsystem against clients, which 

makes it simpler to use the subsystem
• Weakens binding among subsystems, which allows flexible 

modification (or change) of subsystems without impacts to the 
clients

• Reduces compilation effort in large software systems
• Simplifies the portability of subsystems
• Sophisticated clients can still access the whole subsystem
• This pattern does not support any functionality it just reduces 

existing interface
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Proxy

• Purpose
• Presents proxy object which manages access to (usage of) another 

object

• Motivation
• There are situations when clients cannot use (refer to) an object 

directly
• Proxy object can act as a broker between the client and the original 

object
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Proxy

• Usage
• Proxy object has the same interface as an original object
• Proxy object keeps the reference (any type of referencing) to an 

original object and forwards the requests from the client to the 
original object – delegated execution

• Proxy object is allowed to act on behalf of the client with the 
original object

• Proxy object is useful whenever there is a need for more complex 
connection (e.g. remote access) to the original object than a simple 
object reference
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Proxy

• Proxy object types
• Remote proxy – reference to an object in different address space or different 

computer
• Virtual proxy – original object is created only when it is needed
• Copy-on-write proxy – postpone the copy of original object until the action is 

performed (variation of virtual proxy)
• Protection (access) proxy – provides the security levels of the clients to access 

the original object
• Cache proxy – temporary object keeps results of time-consuming operations of 

original object for the clients
• Firewall proxy – secures access to the object against malicious clients
• Synchronization proxy – manages multiple (concurrent) access to the object
• Smart reference proxy – performs additional operations when referring to 

original object
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Proxy

• Structure
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