T —
THE WoRLD SEEr BY Anl "OBTECT-ORENTED " PROGRAMMER.

TR

Pr--u;Mh-ﬂu Delagate

|V*'5'.er~nnﬂor-1n+ul7

OBJECT-ORIENTED PROGRAMMING

Design Patterns and

Frameworks

Lecture #9

doc. Ing. Martin Tomasek, PhD.

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics
Technical University of KoSice

2025/2026

OBJECT-ORIENTED PROGRAMMING

The Open-Closed Principle

* The Open-Closed Principle (OCP) says that we should attempt to
design modules that never need to be changed
* To extend the behavior of the system, we add new code and we do not modify
old code
* Modules that conform to the OCP meet two criteria

* Open for extension — The behavior of the module can be extended to meet new
requirements

* Closed for modification — The source code of the module is not allowed to
change
* How can we do this?
* Abstraction, polymorphism, inheritance, interfaces are good
* Public data members and global data are bad
* Run-time type identification can be bad
* Use design patterns!

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

OCP — Example

* Consider the following method of some class

public void payday(StaffMember[] staffMembers) {
for (int i = 0; i < staffMembers.length; i++) {
System.out.println(staffMembers[i].getName() + " - '
+ staffMembers[i].getSalary();
}
}

* The job of the above function is to print the payday of each staff member in the
specified array of staff members (There are various kinds of staff members in the
company)

» If StaffMember is a base class or an interface and polymorphism is being used, then
this class can easily accommodate new types of staff members without having to be
modified!

* It conforms to the OCP

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

OCP — Example

* But what if the Company Management decides that executives should have a bonus
applied when figuring the total payday and volunteers work for free

* How about the following code?

public void payday(StaffMember[] staffMembers) {
for (int i = 9; i < staffMembers.length; i++) {
double salary = staffMembers[i].getSalary();
if (staffMembers[i] instanceof Executive)
salary += 2000.0;
else if (staffMembers[i] instanceof Volunteer)
salary = 0.0;
System.out.println(staffMembers[i].getName() + " - " + salary);
}
}

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

OCP — Example

* Does this conform to the OCP? No!

* Every time the Company Management comes out with a new
payday policy, we must modify the payday () method
* It is not closed for modification

* Obviously, policy changes such as that mean that we have to
modify code somewhere, so what could we do?

* Use our first version of payday (), we could incorporate payday
policy in new pay () method of StaffMember and do not use
getSalary() method to calculate payday directly

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

OCP — Example

* Here are example StaffMember and Executive classes

// Abstract class StaffMember is the superclass for all staff memebrs.
public abstract class StaffMember {

private double salary;

public StaffMember(double salary) { this.salary = salary; }

public double getSalary() { return this.salary; }

public abstract double pay();
}

// Class Executive implements a StaffMember for applying bonus.
// Payday policy is explicit here!
public class Executive extends StaffMember {
private double bonus;
public Executive(double salary, double bonus) { super(salary); this.bonus = bonus; }
@Override
public double pay() {
return getSalary() + this.bonus; // Apply bonus to salary
}
}

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

OCP - Example

* No problem to extend the application with new types of
employees
* Including their payday policy
* But now we must modify each subclass of StaffMember
whenever the payday policy changes

* Breaks OCP!

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

OCP — Example

* Abetterideais to have a Paﬁ{dayPolicy interface to implemnt any classes which can be used to provide
different payday policies (This solution applies Strategy design pattern)

// The StaffMember class now has a contained PaydayPolicy object.
public class StaffMember {
private double salary;
private PaydayPolicy paydayPolicy;
public StaffMember(doube salary) { this.salary = salary; }
public void setPaydayPolicy(PaydayPolicy paydayPolicy) { this.paydayPolicy = paydayPolicy; }
public double pay() { return paydayPolicy.pay(this.salary); }
}

// Inteface PaydayPolicy for any payday policy implementation.
public interface PaydayPolicy {

double pay(double salary);
}

// Class ExecutivePaydayPolicy implements a payday policy for executives.
public class ExecutivePaydayPolicy implements PaydayPolicy {
private double bonus;
public ExecutivePaydayPolicy(double bonus) { this.bonus = bonus; }
@0verride
public double pay(double salary) { return salary + this.bonus; }
}

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Motivation

* Developing software is hard
* Developing reusable software is even harder
* Proven solutions include design patterns and frameworks

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Overview

* What are design patterns?
* Patterns support reuse of software architecture and design
 Patterns capture the static and dynamic structures and collaborations of
successful solutions to problems that arise when building applications in a
domain
* What are frameworks?
* Frameworks support reuse of detailed design and code

* A framework is an integrated set of components that collaborate to provide a
reusable architecture for a family of related applications

* Together, design patterns and frameworks help to improve
software quality and reduce development time
* Reuse, extensibility, modularity, performance, etc.

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Patterns of learning

* Successful solutions to many areas of human endeavor are
deeply rooted in patterns

* An important goal of education is transmitting patterns of
learning from generation to generation

* Let’s see how patterns are used to learn chess

* Learning to develop good software is like learning to play
good chess

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Becoming a chess master

* First learn the rules
* Names of pieces, legal movements, chess board geometry and
orientation, etc.
* Then learn the principles
* Relative value of certain pieces, strategic value of center squares,
power of a threat, etc.
* However, to become a master of chess, one must study
the games of other masters
* These games contain patterns that must be understood,
memorized, and applied repeatedly

* There are hundreds of these patterns

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Becoming a software design master

* First learn the rules
* The algorithms, data structures and languages of software

* Then learn the principles
* Structured programming, modular programming, object-oriented
programming, generic programming, etc.
* However, to become a master of software design, one
must study the designs of other masters
» These designs contain patterns that must be understood,
memorized, and applied repeatedly

* There are hundreds of these patterns

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Design patterns

* Design patterns represent solutions to problems that arise
when developing software within a context

pattern = (problem, solution, context)

* Patterns capture the static and dynamic structure and
collaboration among key participants in software designs
* They are particularly useful for articulating how and why to resolve
non-functional forces

 Patterns facilitate reuse of successful software architectures
and designs

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Example: Specification

» Application of Stock Quote Service

* Requirements
* There may be many observers

* Each observer may react differently to
the same notification

* The subject should be as decoupled as
possible from the observers

* Allow observers to change independently
of the subject Observers

* We will use Observer design
pattern to design the system

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Example: Structure of the Observer
design pattern

* Define a one-to-many

dependency between objects SO0 mmrrwe
. o.update()
that when one object changes cliy Glemyer
. | | N | update()
state, all its dependents are SSmet Tomm T
notified and updated i1 | s
au '[Ol’natlc al ly detach(observer) ‘I‘. "f,ﬂr '3;,53
\ Conlcrete
Observer
Concrete update() O
Subject wubjest S
get_state() O
subject state

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Example: Interaction in the Observer
design pattern

* Push architectures combine

Ci 1 C t C t
control flow and data flow e e N i)
* Pull architectures separate L set state()] |
control flow from data flow notify() |
it }
|

update() -

|
|
|
|
|
|
|
|
get state() |
|
|

|
} update() 3
| otz
_ | get state()
|
|
|

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

How to describe design patterns?

* Main parts
* Name and intent
* Problem and context
* Force(s) addressed
 Abstract description of structure and collaborations in solution
* Positive and negative consequence(s) of use
* Implementation guidelines and sample code
* Known uses and related patterns

* Pattern descriptions are often independent of programming
language or implementation details
* Contrast with frameworks

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Frameworks

* Frameworks are semi-complete applications
» Complete applications are developed by inheriting from, and
instantiating parameterized framework components
* Frameworks provide domain-specific functionality
* Business applications, telecommunication applications, window
systems, databases, distributed applications, OS kernels, etc.
* Frameworks exhibit inversion of control at run-time

* i.e., the framework determines which objects and methods to
invoke in response to events

Lecture #9: Design Patterns and Frameworks

10

Class libraries vs. frameworks

OBJECT-ORIENTED PROGRAMMING

SPECIFIC

<
i
\

\

b

b

* Class libraries oo | o ”
« Self-contained, pluggable ADTs RETINALITY S

ADT
T |_. CLASSES DATABASE
i bi CLASSES
-

Gul
event | GLUA NETWORK
* Frameworks (o o= |_.‘ T

CLASSES

* Reusable, semi-complete
applications

=

INVOKES SPECIFIC

cALL
Backs| /Y
FUNCTIONALITY | EVENT
MATH LOOP
CLASSES \/

NETWORKING @

APPLICATION-

Lecture #9: Design Patterns and Frameworks

EVENT

Component integration in framework

DATABASE |

lﬁ

OBJECT-ORIENTED PROGRAMMING

* Framework components are loosely
coupled via callbacks

* Callbacks allow independently

developed software components to be
connected together

APPLICATION
CODE

EVENT
HANDLER(S)

callback()

* Callbacks provide a connection-point

DISPATCHER

where generic framework objects can
communicate with application objects

EVENT LOOP

EVENT SENSOR

* The framework provides the common
template methods and the application

SYSTEM
CODE

provides the variant hook methods

Lecture #9: Design Patterns and Frameworks

11

OBJECT-ORIENTED PROGRAMMING

Comparing design patterns and
frameworks

* Patterns and frameworks are highly
synergistic
* Neither is subordinate

Cached Virtual
Filesystem

 Patterns can be characterized as
more abstract descriptions of WS seisieiosss v

frameworks, which are implemented [row = ||‘
in a language = o e

* In general, sophisticated : :
frameworks embody dozens of
patterns and patterns are often used
to document frameworks

Tilde —~

S \/lmme/‘...

Strategy

Concurrency
Strategy
Framework

Service Configurator

Active Object

Protacol Pipeline
Framework

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Design patterns classification

* Creational patterns
* Deal with initializing and configuring classes and objects

* Abstract factory, Builder, Factory method, Lazy initialization, Multiton, Object
pool, Prototype, Resource acquisition is initialization, Singleton

* Structural patterns
* Deal with decoupling interface and implementation of classes and objects
» Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Front controller,
Module, Proxy
* Behavioral patterns
* Deal with dynamic interactions among societies of classes and objects

* Blackboard, Chain of responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Null object, Observer, Servant, Specification, State, Strategy,
Template method, Visitor

Lecture #9: Design Patterns and Frameworks

12

OBJECT-ORIENTED PROGRAMMING

When to use patterns?

* Solutions to problems that recur with variations
* No need for reuse if the problem only arises in one context

* Solutions that require several steps
* Not all problems need all steps
* Patterns can be overkill if solution is simple linear set of
instructions
* Solutions where the solver is more interested in the existence
of the solution than its complete derivation

* Patterns leave out too much to be useful to someone who really
wants to understand
* They can be a temporary bridge, however

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

What makes a pattern a pattern?

* Solves a problem,
* It must be useful

* Has a context
It must describe where the solution can be used

* Recurs
* It must be relevant in other situations
* Teaches
* It must provide enough understanding to tailor the solution

* Has a name
* It must be referred to consistently

Lecture #9: Design Patterns and Frameworks

13

Key principles

* Successful design patterns and frameworks can be boiled
down to a few key principles
* Separate interface from implementation

* Determine what is common (stable) and what is variable with an
interface and an implementation

* Allow substitution of variable implementations via a common
interface
* Dividing commonality from variability should be goal-
oriented rather than exhaustive

* Frameworks often represent the distinction between
commonality and variability via template methods and
hook methods, respectively

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Benefits of design patterns

* Design patterns enable large-scale reuse of software
architectures

* They also help document systems to enhance understanding

* Patterns explicitly capture expert knowledge and design
tradeoffs, and make this expertise more widely available

* Patterns help improve developer communication
* Pattern names form a vocabulary

* Patterns help ease the transition to object-oriented
technology

Lecture #9: Design Patterns and Frameworks

14

OBJECT-ORIENTED PROGRAMMING

Drawbacks of design patterns

* Patterns do not lead to direct code reuse
* Patterns are deceptively simple
» Teams may suffer from pattern overload

* Patterns are validated by experience and discussion rather
than by automated testing

* Integrating patterns into a software development process is a
human-intensive activity

Lecture #9: Design Patterns and Frameworks

OBJECT-ORIENTED PROGRAMMING

Tips for using patterns effectively

* Do not recast everything as a pattern

* Instead, develop strategic domain patterns and reuse existing
tactical patterns

* Institutionalize rewards for developing patterns

* Directly involve pattern authors with application developers
and domain experts

* Clearly document when patterns apply and do not apply
* Manage expectations carefully

Lecture #9: Design Patterns and Frameworks

15

OBJECT-ORIENTED PROGRAMMING

Benefits/drawbacks of frameworks

* Benefits of frameworks
* Enable direct reuse of code
* Facilitate larger amounts of reuse than stand-alone functions or
individual classes
* Drawbacks of frameworks
* High initial learning curve
* Many classes, many levels of abstraction
* The flow of control for reactive dispatching is non-intuitive
* Verification and validation of generic components is hard

Lecture #9: Design Patterns and Frameworks

16

