Have you ever
wondered what
higher-order Do you even
functions are? lambda, bro?

@O @
Gon Y B

P

OBJECT-ORIENTED PROGRAMMING

Lambda Expressions

Lecture #8

doc. Ing. Martin Tomasek, PhD.

Departments of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Kosice

2025/2026

OBJECT-ORIENTED PROGRAMMING

What 1s functional programming?

* A style of programming that treats computation as the evaluation
of mathematical functions

* Programs are constructed by applying and composing functions

* Declarative programming paradigm

» Expressions defining a function, rather than a sequence of imperative
statements which change the state of the program

* High-order functions — functions can take functions as arguments
and return functions as results

* Pure functions — eliminates side effects

» Expressions have referential transparency
* Treats data as being immutable

* Prefers recursion over explicit loops

* Functional programming languages: Lisp, Haskell, Ocaml, F#,
etc.

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

What do functional programming?

» Allows us to write easier-to-understand, more declarative, more
concise programs than imperative programming

* Allows us to focus on the problem rather than the code
* Facilitates parallelism

» Example: Factorial

Imperative language (C): Functional language (Haskell):
int factorial(int n) { factorial @ = 1
if (n <= 1) factorial n = n * factorial(n - 1)

return 1;
return n * factorial(n - 1);

}

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Composition of functions

Function composition in functional language (Curry): Function composition in imperative language (Javascript):

const compose = f => g => x => £(g(x)); let compose = function(f, g) {
return (x) => f(g(x));
}

compose (x => x * 4) (x => x + 3) (2); or
// (2 +3) *4
// => 20 let compose = (f, g) => (x) => f(g(x));

compose((x) => x * 4, (x) => x + 3)(2);
// (2 +3) *4
// => 20

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

The lambda calculus

* Formal model of computation underlying all functional
programming languages

* Introduced in the 1930s by Alonzo Church as a mathematical
system for defining computable functions

* Lambda calculus and Turing machines are equivalent models
of computation (showing that the lambda calculus is Turing
complete)

* Basis for Church-Turing thesis

* Features from the lambda calculus such as lambda
expressions have been incorporated into many widely used
programming languages like C++, C#, Java, Python,
Javascript, etc.

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

What 1s the lambda calculus?

* The central concept in the lambda calculus is an expression
generated by the following grammar which can denote a
function definition, function application, variable, or
parenthesized expression

E:=Ax.E|EE|x|(E)
* We can think of a lambda-calculus expression as a program
which when evaluated by beta-reductions
(Ax.E)E") > E{x «— E'}
returns a result consisting of another lambda-calculus
expression

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example of a lambda expression

* The lambda expression
Ax.(x+1)2

represents the application of a function A x . (x + 1) with a formal
parameter x and a body x + 1 to the argument 2

* Execution of the expression (beta-reduction is applied)
Ax. (x+D)2—>x+D){x«—2} 52+1

* Notice that the function definition A x . (x + 1) has no name — it is
an anonymous function

* In Java, we would represent this function definition by the Java
lambda expression

X ->x +1

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Examples of Java lambda expressions

* A Java lambda is basically a method in Java without a declaration
usually written as

(parameters) -> { body }

* Examples
(int x, int y) -> { return x + y; }
X ->x ¥ x

() -> x

* A lambda can have zero or more parameters separated by commas and
their type can be explicitly declared or inferred from the context

* Parenthesis are not needed around a single parameter
* () is used to denote zero parameters

* The body can contain zero or more statements

* Braces are not needed around a single-statement body

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Benefits of lambda expressions in Java

* Enabling functional programming

* Writing leaner more compact code

* Facilitating parallel programming

* Developing more generic, flexible and reusable APIs
* Being able to pass behaviors as well as data to functions

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example: Print a list of integers

List<Integer> intSeq = Arrays.asList(1, 2, 3);
intSeq.forEach(x -> System.out.println(x));

* X -> System.out.println(x) is a lambda expression
that defines an anonymous function with one parameter
named X of type Integer

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example: Multiline lambda

List<Integer> intSeq = Arrays.asList(1, 2, 3);
intSeq.forkach(x -> {

X += 2;

System.out.println(x);
1)

* Braces are needed to enclose a multiline body in a lambda
expression

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example: Lambda with defined local
variable

List<Integer> intSeq = Arrays.asList(1, 2, 3);
intSeq.forkach(x -> {

int y = x * 2;

System.out.println(y);
1)

* Just as with ordinary functions, you can define local
variables inside the body of a lambda expression

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example: Lambda with a declared

parameter type

List<Integer> intSeq = Arrays.asList(1, 2, 3);
intSeq.forEach((Integer x) -> {

X += 2;

System.out.println(x);
1)

* You can, if you wish, specify the parameter type

* Automatic type inference is used to check the valid type of
the parameters

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Implementation of Java lambda

* The Java compiler first converts a lambda expression into a
function

* It then calls the generated function

* For example, x -> System.out.println(x) could be
converted into a generated static function

public static void genFuncName(Integer x) {
System.out.println(x);
}

* But what type should be generated for this function? How
should it be called? What class should it go in?

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Functional interfaces

* Design decision: Java lambdas are assigned to functional
interfaces

* A functional interface is a Java interface with exactly one
non-default method, for example

public interface Consumer<T> {
void accept(T t);
}

* The package java.util.function defines many useful
functional interfaces

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Assigning lambda to a local variable

/ Functional interface used for

implementing a lambda expression.

public interface Consumer<T> {
Ivoid accept(T t);I
}

Method forEach() from list
List<Integer> interface, which
void forEach(Consumer<Integer> action) {

receives Consumer<Integer> asa
parameter. Consumer<Integer>
implementation is generated from
action.accept(i); the lambda expression.

for (Integer i : items) {

Creating new
Consumer<Integer> asa lambda
List<Integer> intSeq = Arrays.aslList(1,2,3); expression.

Consumer<Integer> cnsmr =|x -> System.out.println(x);F

intSeq.forEach(cnsmr);

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Properties of the generated method

* The method generated from a Java lambda expression has
the same signature as the method in the functional interface

* The type is the same as that of the functional interface to
which the lambda expression is assigned

* The lambda expression becomes the body of the method in
the interface

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Variable capture

» Lambdas can interact with variables defined outside the body
of the lambda

 Using these variables is called variable capture

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example: Local variable capture

public class LVCExample {
public static void main(String[] args) {
List<Integer> intSeq = Arrays.aslList(1, 2, 3);

int var = 10;

intSeq.forEach(x -> System.out.println(x + var));

}
}

* Local variables used inside the body of a lambda must be
final or effectively final

Lecture #8: Lambda Expressions

10

OBJECT-ORIENTED PROGRAMMING

Example: Static variable capture

public class SVCExample {
private static int var = 10;
public static void main(String[] args) {

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forkach(x -> System.out.println(x + var));

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Method references (1)

* Method references can be used to pass an existing function
in places where a lambda is expected

* The signature of the referenced method needs to match the
signature of the functional interface method

Lecture #8: Lambda Expressions

11

OBJECT-ORIENTED PROGRAMMING

Method references (2)

* Static method
ClassName: :StaticMethodName
(e.g. String: :valueOf)

 Constructor
ClassName: :new
(e.g. ArrayList: :new)

* Specific object instance
objectInstance: :MethodName
(e.g. myCooler: :coolReactor)

* Arbitrary object of a given type
ClassName: :InstanceMethodName
(e.g. Object::toString)

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Conciseness with method references

* We can rewrite the statement
intSeq.forkach(x -> System.out.println(x));
more concisely using a method reference

intSeq.forkach(System.out::println);

Lecture #8: Lambda Expressions

12

Stream API

* The new java.util. stream package provides utilities to
support functional-style operations on streams of values

* A common way to obtain a stream is from a collection
Stream<T> stream = collection.stream();
 Streams can be sequential or parallel

* Streams are useful for selecting values and performing
actions on the results

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Stream operations

* An intermediate operation keeps a stream open for further
operations
* Intermediate operations are lazy
* A terminal operation must be the final operation on a stream

* Once a terminal operation is invoked, the stream is consumed and
1s no longer usable

Lecture #8: Lambda Expressions

13

OBJECT-ORIENTED PROGRAMMING

Exampe: Intermediate operations

filter

* Excludes all elements that don’t match a predicate

map
* Performs a one-to-one transformation of elements using a function

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

A stream pipeline

* A stream pipeline has three components

* A source such as a collection, an array, a generator function, or an
IO channel

» Zero or more intermediate operations
* A terminal operation

Lecture #8: Lambda Expressions

14

- OBJECL-ORIENTED PROGRAMMING |
Example: Filter elements, map them to
numbers, and sum

int sum = widgets.stream()
.filter(w -> w.getColor() == RED)
.mapToInt(w -> w.getWeight())
.sum();

* Here, widgets is a Collection<Widget>. We create a
stream of Widget objects via Collection.stream(),
filter it to produce a stream containing only the red widgets,
and then transform it into a stream of int values representing
the weight of each red widget. Then this stream is summed
to produce a total weight

Lecture #8: Lambda Expressions

OBJECT-ORIENTED PROGRAMMING

Example: Using lambdas and stream to sum
the squares of the elements on a list

List<Integer> list = Arrays.aslList(1, 2, 3);
int sum = list.stream()

.map(x -> X * x)

.reduce((x, y) -> X +Yy)

.get();
System.out.println(sum);

* Here map(x -> x * Xx) squares each element and then
reduce((x, y) -> x + y) reduces all elements into a

single number

Lecture #8: Lambda Expressions

15

