
1

OBJECT-ORIENTED PROGRAMMING

Lambda Expressions

Lecture #8

doc. Ing. Martin Tomášek, PhD.
Departments of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2025/2026

2

OBJECT-ORIENTED PROGRAMMING

What is functional programming?

• A style of programming that treats computation as the evaluation
of mathematical functions

• Programs are constructed by applying and composing functions

• Declarative programming paradigm
• Expressions defining a function, rather than a sequence of imperative

statements which change the state of the program

• High-order functions – functions can take functions as arguments
and return functions as results

• Pure functions – eliminates side effects
• Expressions have referential transparency
• Treats data as being immutable
• Prefers recursion over explicit loops
• Functional programming languages: Lisp, Haskell, Ocaml, F#,

etc.
Lecture #8: Lambda Expressions 3

OBJECT-ORIENTED PROGRAMMING

What do functional programming?

• Allows us to write easier-to-understand, more declarative, more
concise programs than imperative programming

• Allows us to focus on the problem rather than the code

• Facilitates parallelism

• Example: Factorial

Lecture #8: Lambda Expressions 4

Imperative language (C):

int factorial(int n) {
if (n <= 1)
return 1;

return n * factorial(n - 1);
}

Functional language (Haskell):

factorial 0 = 1
factorial n = n * factorial(n - 1)

3

OBJECT-ORIENTED PROGRAMMING

Composition of functions

Lecture #8: Lambda Expressions 5

Function composition in functional language (Curry):

const compose = f => g => x => f(g(x));

compose (x => x * 4) (x => x + 3) (2);
// (2 + 3) * 4
// => 20

Function composition in imperative language (Javascript):

let compose = function(f, g) {
return (x) => f(g(x));

}

or

let compose = (f, g) => (x) => f(g(x));

compose((x) => x * 4, (x) => x + 3)(2);
// (2 + 3) * 4
// => 20

OBJECT-ORIENTED PROGRAMMING

The lambda calculus

• Formal model of computation underlying all functional
programming languages

• Introduced in the 1930s by Alonzo Church as a mathematical
system for defining computable functions

• Lambda calculus and Turing machines are equivalent models
of computation (showing that the lambda calculus is Turing
complete)

• Basis for Church-Turing thesis

• Features from the lambda calculus such as lambda
expressions have been incorporated into many widely used
programming languages like C++, C#, Java, Python,
Javascript, etc.

Lecture #8: Lambda Expressions 6

4

OBJECT-ORIENTED PROGRAMMING

What is the lambda calculus?

• The central concept in the lambda calculus is an expression
generated by the following grammar which can denote a
function definition, function application, variable, or
parenthesized expression

E ::= λ x . E | E E | x | (E)

• We can think of a lambda-calculus expression as a program
which when evaluated by beta-reductions

((λ x . E) E′) → E{x ← E′}

returns a result consisting of another lambda-calculus
expression

Lecture #8: Lambda Expressions 7

OBJECT-ORIENTED PROGRAMMING

Example of a lambda expression

• The lambda expression
λ x . (x + 1) 2

represents the application of a function λ x . (x + 1) with a formal
parameter x and a body x + 1 to the argument 2

• Execution of the expression (beta-reduction is applied)
λ x . (x + 1) 2 → (x + 1){x ← 2} → 2 + 1

• Notice that the function definition λ x . (x + 1) has no name – it is
an anonymous function

• In Java, we would represent this function definition by the Java
lambda expression

x -> x + 1

Lecture #8: Lambda Expressions 8

5

OBJECT-ORIENTED PROGRAMMING

Examples of Java lambda expressions

• A Java lambda is basically a method in Java without a declaration
usually written as

(parameters) -> { body }
• Examples

(int x, int y) -> { return x + y; }
x -> x * x
() -> x

• A lambda can have zero or more parameters separated by commas and
their type can be explicitly declared or inferred from the context

• Parenthesis are not needed around a single parameter
• () is used to denote zero parameters
• The body can contain zero or more statements
• Braces are not needed around a single-statement body
Lecture #8: Lambda Expressions 9

OBJECT-ORIENTED PROGRAMMING

Benefits of lambda expressions in Java

• Enabling functional programming

• Writing leaner more compact code

• Facilitating parallel programming

• Developing more generic, flexible and reusable APIs

• Being able to pass behaviors as well as data to functions

Lecture #8: Lambda Expressions 10

6

OBJECT-ORIENTED PROGRAMMING

Example: Print a list of integers

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach(x -> System.out.println(x));

• x -> System.out.println(x) is a lambda expression
that defines an anonymous function with one parameter
named x of type Integer

Lecture #8: Lambda Expressions 11

OBJECT-ORIENTED PROGRAMMING

Example: Multiline lambda

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach(x -> {

x += 2;

System.out.println(x);

});

• Braces are needed to enclose a multiline body in a lambda
expression

Lecture #8: Lambda Expressions 12

7

OBJECT-ORIENTED PROGRAMMING

Example: Lambda with defined local
variable

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach(x -> {

int y = x * 2;

System.out.println(y);

});

• Just as with ordinary functions, you can define local
variables inside the body of a lambda expression

Lecture #8: Lambda Expressions 13

OBJECT-ORIENTED PROGRAMMING

Example: Lambda with a declared
parameter type

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach((Integer x) -> {

x += 2;

System.out.println(x);

});

• You can, if you wish, specify the parameter type

• Automatic type inference is used to check the valid type of
the parameters

Lecture #8: Lambda Expressions 14

8

OBJECT-ORIENTED PROGRAMMING

Implementation of Java lambda

• The Java compiler first converts a lambda expression into a
function

• It then calls the generated function

• For example, x -> System.out.println(x) could be
converted into a generated static function

public static void genFuncName(Integer x) {

System.out.println(x);

}

• But what type should be generated for this function? How
should it be called? What class should it go in?

Lecture #8: Lambda Expressions 15

OBJECT-ORIENTED PROGRAMMING

Functional interfaces

• Design decision: Java lambdas are assigned to functional
interfaces

• A functional interface is a Java interface with exactly one
non-default method, for example

public interface Consumer<T> {
void accept(T t);

}
• The package java.util.function defines many useful

functional interfaces

Lecture #8: Lambda Expressions 16

9

OBJECT-ORIENTED PROGRAMMING

Assigning lambda to a local variable
public interface Consumer<T> {

void accept(T t);

}

void forEach(Consumer<Integer> action) {

for (Integer i : items) {

action.accept(i);

}

}

List<Integer> intSeq = Arrays.asList(1,2,3);

Consumer<Integer> cnsmr = x -> System.out.println(x);

intSeq.forEach(cnsmr);

Lecture #8: Lambda Expressions 17

Functional interface used for
implementing a lambda expression.

Method forEach() from list
List<Integer> interface, which
receives Consumer<Integer> as a
parameter. Consumer<Integer>
implementation is generated from
the lambda expression.

Creating new
Consumer<Integer> as a lambda
expression.

OBJECT-ORIENTED PROGRAMMING

Properties of the generated method

• The method generated from a Java lambda expression has
the same signature as the method in the functional interface

• The type is the same as that of the functional interface to
which the lambda expression is assigned

• The lambda expression becomes the body of the method in
the interface

Lecture #8: Lambda Expressions 18

10

OBJECT-ORIENTED PROGRAMMING

Variable capture

• Lambdas can interact with variables defined outside the body
of the lambda

• Using these variables is called variable capture

Lecture #8: Lambda Expressions 19

OBJECT-ORIENTED PROGRAMMING

Example: Local variable capture

public class LVCExample {
public static void main(String[] args) {
List<Integer> intSeq = Arrays.asList(1, 2, 3);

int var = 10;

intSeq.forEach(x -> System.out.println(x + var));
}

}

• Local variables used inside the body of a lambda must be
final or effectively final

Lecture #8: Lambda Expressions 20

11

OBJECT-ORIENTED PROGRAMMING

Example: Static variable capture

public class SVCExample {

private static int var = 10;

public static void main(String[] args) {

List<Integer> intSeq = Arrays.asList(1, 2, 3);

intSeq.forEach(x -> System.out.println(x + var));

}

}

Lecture #8: Lambda Expressions 21

OBJECT-ORIENTED PROGRAMMING

Method references (1)

• Method references can be used to pass an existing function
in places where a lambda is expected

• The signature of the referenced method needs to match the
signature of the functional interface method

Lecture #8: Lambda Expressions 22

12

OBJECT-ORIENTED PROGRAMMING

Method references (2)

• Static method
ClassName::StaticMethodName
(e.g. String::valueOf)

• Constructor
ClassName::new
(e.g. ArrayList::new)

• Specific object instance
objectInstance::MethodName
(e.g. myCooler::coolReactor)

• Arbitrary object of a given type
ClassName::InstanceMethodName
(e.g. Object::toString)

Lecture #8: Lambda Expressions 23

OBJECT-ORIENTED PROGRAMMING

Conciseness with method references

• We can rewrite the statement

intSeq.forEach(x -> System.out.println(x));

more concisely using a method reference

intSeq.forEach(System.out::println);

Lecture #8: Lambda Expressions 24

13

OBJECT-ORIENTED PROGRAMMING

Stream API

• The new java.util.stream package provides utilities to
support functional-style operations on streams of values

• A common way to obtain a stream is from a collection

Stream<T> stream = collection.stream();

• Streams can be sequential or parallel

• Streams are useful for selecting values and performing
actions on the results

Lecture #8: Lambda Expressions 25

OBJECT-ORIENTED PROGRAMMING

Stream operations

• An intermediate operation keeps a stream open for further
operations

• Intermediate operations are lazy

• A terminal operation must be the final operation on a stream
• Once a terminal operation is invoked, the stream is consumed and

is no longer usable

Lecture #8: Lambda Expressions 26

14

OBJECT-ORIENTED PROGRAMMING

Exampe: Intermediate operations

filter
• Excludes all elements that don’t match a predicate

map
• Performs a one-to-one transformation of elements using a function

Lecture #8: Lambda Expressions 27

OBJECT-ORIENTED PROGRAMMING

A stream pipeline

• A stream pipeline has three components
• A source such as a collection, an array, a generator function, or an

IO channel
• Zero or more intermediate operations
• A terminal operation

Lecture #8: Lambda Expressions 28

15

OBJECT-ORIENTED PROGRAMMING

Example: Filter elements, map them to
numbers, and sum
int sum = widgets.stream()

.filter(w -> w.getColor() == RED)

.mapToInt(w -> w.getWeight())

.sum();

• Here, widgets is a Collection<Widget>. We create a
stream of Widget objects via Collection.stream(),
filter it to produce a stream containing only the red widgets,
and then transform it into a stream of int values representing
the weight of each red widget. Then this stream is summed
to produce a total weight

Lecture #8: Lambda Expressions 29

OBJECT-ORIENTED PROGRAMMING

Example: Using lambdas and stream to sum
the squares of the elements on a list

List<Integer> list = Arrays.asList(1, 2, 3);

int sum = list.stream()

.map(x -> x * x)

.reduce((x, y) -> x + y)

.get();

System.out.println(sum);

• Here map(x -> x * x) squares each element and then
reduce((x, y) -> x + y) reduces all elements into a
single number

Lecture #8: Lambda Expressions 30

