
1

OBJECT-ORIENTED PROGRAMMING

Generic Programming

Lecture #6

doc. Ing. Martin Tomášek, PhD.
Departments of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2025/2026



2

OBJECT-ORIENTED PROGRAMMING

Motivation

• Define software components with type parameters
• A sorting algorithm has the same structure, regardless of the types 

being sorted
• Stack primitives have the same semantics, regardless of the objects 

stored on the stack

• Most common use
• Algorithms on containers – updating, iteration, search

• Existing implementations
• C – macros (textual substitution)
• Ada – generic units and instantiations
• OO languages (C++, Java, C#) – templates / generics

Lecture #6: Generic Programming 3

OBJECT-ORIENTED PROGRAMMING

Example – design

• Let’s have a class that implements a container of various objects 
(Container)

• For now, the representation of the list (array, linked list, tree) is not important
• We just want to have a list of any type of objects

• Using general class hierarchy and polymorphic reference we can 
implement commonly usable class Container

Lecture #6: Generic Programming 4

...

Container

- items: Object[]
+ Container(maxSize: int)
+ add(item: Object): void
+ first(): Object
+ next(): Object
+ hasNext(): boolean

Object

BA



3

OBJECT-ORIENTED PROGRAMMING

Example – usage of the container 
• Consider the following segment of code that prints out all the elements in a 

container

public void printContainer(Container c) {
for (Object o = c.first(); c.hasNext(); o = c.next()) {

if (o instanceof A) {
A a = (A) o;
// Print item of type A

}
else if (o instanceof B) {

B b = (B) o;
// Print item of type B

}
else {

// Not implemented
}

}
}

Lecture #6: Generic Programming 5

• There is a strange 
construction with casting

• The problems can occur 
during run-time when 
casting is checked

OBJECT-ORIENTED PROGRAMMING

Example – need for parametrized types?

• The Container is universal implementation
• Uses polymorphic reference to implement array of any objects

• Casting is checked at run-time, so we are never sure about 
correct types

• Programmer can make a mistake and add object of type 
which is not allowed in the application

• E.g. our example is using only A and B, other classes are not 
implemented

• Can we make container where we specify what type of 
items are contained?

• This can omit casting problem for programmers

Lecture #6: Generic Programming 6



4

OBJECT-ORIENTED PROGRAMMING

Generic programming

• Programming paradigm for developing efficient, reusable software 
libraries

• For example STL in ANSI/ISO C++

• The idea of generic programming process
• Lifting: Providing suitable abstractions so that a single, generic algorithm can 

cover many concrete implementations 
• Focuses on finding commonality among similar implementations of the same 

algorithm
• Concepts: Describe a set of abstractions, each of which meets all of the 

requirements of a concept
• Concepts that emerge tend to describe the abstractions within the problem domain in 

some logical way

• The output of the generic programming process is not just a generic, 
reusable implementation, but a better understanding of the problem 
domain

Lecture #6: Generic Programming 7

OBJECT-ORIENTED PROGRAMMING

Object-oriented principles for generic 
programming
• Abstraction and encapsulation

• Subtyping and subclassing

• Subtype polymorphism

• Templates / generics
• Classes, interfaces and functions with type parameters

Lecture #6: Generic Programming 8



5

OBJECT-ORIENTED PROGRAMMING

Type as a parameter of a class

• The generic class (or interface) can be defined with a type 
parameter(s)

• Parametric polymorphism

• Generic class must specify generic behavior that can work 
with any substituted type

• Generic class defines
• Generic attributes – where attributes are without concrete type
• Generic methods – methods that does not specify concrete return 

type or their parameters can have different types

Lecture #6: Generic Programming 9

OBJECT-ORIENTED PROGRAMMING

Example – redesign with generics

• Let’s have the same example – a class that implements a 
container of various objects (Container)

• We will use generic class with type parameter

Lecture #6: Generic Programming 10

Container

- items: T[]
+ Container(maxSize: int)
+ add(item: T): void
+ first(): T
+ next(): T
+ hasNext(): boolean

T



6

OBJECT-ORIENTED PROGRAMMING

Example – conclusions

• Here we say that Container is a generic class that takes a 
type parameter T

• A and B are substituted in the test case

• We no longer need to cast to e.g. an A since the first()
and next() methods would return a reference to an object 
of a specific type

• A in this case

• If we were to assign an extracted element to a different type, 
the error would be at compile-time instead of run-time

• This early static checking increases the type safety of the language

Lecture #6: Generic Programming 11

OBJECT-ORIENTED PROGRAMMING

Generic interface

• In Java also interfaces can be defined with a type parameters

• Let’s rebuild our example another way – using generic interface

public interface Container<T> {
void add(T item);
T first();
T next();
boolean hasNext();

}

• This interface can be implemented by any class to add generic 
container behavior

Lecture #6: Generic Programming 12

StringArray

<<interface>>

Container

+ add(item: T): void
+ first(): T
+ next(): T
+ hasNext(): boolean

T

IntegerArray ArticleArray
...



7

OBJECT-ORIENTED PROGRAMMING

Generic methods

• In Java genericity is not limited to classes and interfaces, you 
can define generic methods

• Static methods, non-static methods, and constructors can all 
be parameterized in almost the same way as for classes and 
interfaces

• Generic methods are also invoked in the same way as non-
generic methods

Lecture #6: Generic Programming 13

OBJECT-ORIENTED PROGRAMMING

Generic methods

• Using generics, polymorphic method printContainer()
can be re-written as follows (note that the Container<T> is 
the container of any type)

public <T> void printContainer(Container<T> c) {
for (T o = c.first(); c.hasNext(); o = c.next()) {

// Print item of any type T
}

}

Lecture #6: Generic Programming 14

• This indicates the method 
is polymorphic

• It denotes “for all types T”



8

OBJECT-ORIENTED PROGRAMMING

Wildcards instead of parameters

• There are three types of wildcards
• ? extends T – Denotes a family of subtypes of type T i.e. ?  T
• ? super T – Denotes a family of supertypes of type T i.e. T  ?
• ? – Denotes the set of all types or any

• Our polymorphic method with wildcard instead of parameter

public void printContainer(Container<?> c) {
for (Object o = c.first(); c.hasNext(); o = c.next()) {

// Now we again need casting!!!
}

}

Lecture #6: Generic Programming 15

OBJECT-ORIENTED PROGRAMMING

Example

• Consider a drawShapes() method that should be capable 
of drawing any shape such as circle, rectangle, and triangle

• Shape is an abstract class with three subclasses: Circle, 
Rectangle, and Triangle

public void drawShapes(Container<Shape> shapes) {
for (Shape s = shapes.first(); shapes.hasNext(); s = shapes.next()) {
s.draw();

}
}

• It is worth noting that the drawShapes() method can only 
be called on lists of Shape and cannot be called on a list of 
Circle, Rectangle, and Triangle

Lecture #6: Generic Programming 16



9

OBJECT-ORIENTED PROGRAMMING

• Let’s have types A, B where B  A, and generic type C<T> 
where T is substituted either by A (we have C<A>) or by B
(we have C<B>)

• C<B>  C<A>

• C<B>  C<? extends A>

Subtyping generics

Lecture #6: Generic Programming 17

✓

OBJECT-ORIENTED PROGRAMMING

Example revisited

• With correct wildcard drawShape() method can be called 
on lists of Shape as well as on a list of Circle, 
Rectangle, and Triangle

public void drawShapes(Container<? extends Shape> shapes) {
for (Shape s = shapes.first(); shapes.hasNext(); s = shapes.next()) {
s.draw();

}
}

Lecture #6: Generic Programming 18



10

OBJECT-ORIENTED PROGRAMMING

Animals in the cages

• A cage is a collection of things, with bars to keep them in (let’s use List<T>)

• A lion is a kind of animal, so Lion would be a subtype of Animal
public class Lion extends Animal { ... }
Lion simba = new Lion("Simba");

• Where we need some animal, we are free to provide a lion 
Animal a = simba;

• A lion can of course be put into a lion cage 
List<Lion> lionCage = new LinkedList<>();
lionCage.add(simba);

• And a butterfly into a butterfly cage: 
public class Butterfly extends Animal { ... }
Butterfly emanuel = new Butterfly("Emanuel");
List<Butterfly> butterflyCage = new LinkedList<>();
butterflyCage.add(emanuel);

Lecture #6: Generic Programming 19

OBJECT-ORIENTED PROGRAMMING

Is a lion cage a kind of all-animal cage?

• But what about an all-animal cage?
List<Animal> animalCage = new LinkList<>();

• This is a cage designed to hold all kinds of animals, mixed together. It 
must have bars strong enough to hold in the lions, and spaced closely 
enough to hold in the butterflies
animalCage.add(simba);
animalCage.add(emanuel);

• Since a Lion is a subtype of Animal: Is a lion cage a kind of all-
animal cage? Is List<Lion> a subtype of List<Animal>? No!
animalCage = lionCage;
animalCage = butterflyCage;

• Without generics, the animals could be placed into the wrong kinds of 
cages, where it would be possible for them to escape

Lecture #6: Generic Programming 20

Compile-time error because List<Lion> is 
not a subtype of List<Animal>



11

OBJECT-ORIENTED PROGRAMMING

Is a lion cage a kind of all-animal cage?

• To specify a cage capable of holding some kind of animal 
List<? extends Animal> someCage;

• While List<Lion> and List<Butterfly> are not subtypes of 
List<Animal>, they are in fact subtypes of List<? extends
Animal>
someCage = lionCage;
someCage = butterflyCage;

• Can you add butterflies and lions directly to someCage? No!
someCage.add(lionKing);
someCage.add(motylEmanuel);

• If someCage is a butterfly cage, it would hold butterflies just fine, but 
the lions would be able to break free. If it is a lion cage, then all would 
be well with the lions, but the butterflies would fly away

Lecture #6: Generic Programming 21

Only reference! We cannot instantiate a 
cage of generic type ? extends Animal

Compile-time error. Type of items in someCage cannot 
be resolved (wildcard ? extends Animal is used)

This is OK, List<Lion> and List<Butterfly>
are subtypes of List<? extends Animal>

OBJECT-ORIENTED PROGRAMMING

Is a lion cage a kind of all-animal cage?

• So, if you cannot put anything at all into someCage, is it useless? No, 
because you can still read its contents
public void feedAnimals(List<? extends Animal> someCage) {

for (Animal animal : someCage)
animal.feedMe();

}

• You could house your animals in their individual cages, and invoke this 
method first for the lions and then for the butterflies
feedAnimals(lionCage);
feedAnimals(butterflyCage);

• Or, you could choose to combine your animals in the all-animal cage 
instead
feedAnimals(animalCage);

Lecture #6: Generic Programming 22



12

OBJECT-ORIENTED PROGRAMMING

Examples with wildcards

• Another example of a generic method that uses wildcards to 
sort a list into ascending order

• Elements in the list must implement the Comparable interface
• Elements in the list must be comparable with all their supertypes (at 

least with their type)
• See Java API how Comparable, List, ListIterator and 
Arrays work

public static <T extends Comparable<? super T>> void sort(List<T> list) {
Object[] array = list.toArray();
Arrays.sort(array);
ListIterator<T> iterator = list.listIterator();
for (int i = 0; i < array.length; i++) {
iterator.index();
iterator.set((T) array[i]);

}
}

Lecture #6: Generic Programming 23


