
1

OBJECT-ORIENTED PROGRAMMING

Using Polymorphism Well

Lecture #5

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2025/2026



2

OBJECT-ORIENTED PROGRAMMING

Polymorphism

• Polymorphism means having many forms

• How is this related to object-oriented programming?
• Polymorphic reference

• Since a polymorphic reference can refer to different types of 
objects over time the specific method it invokes can also 
change from one invocation to the next

Lecture #5: Using Polymorphism Well 3

OBJECT-ORIENTED PROGRAMMING

Forms of polymorphism

• Ad-hoc polymorphism
• Polymorphic functions which can be applied to arguments of different types, but 

which behave differently depending on the type of the argument to which they 
are applied

• Function overloading (e.g. overloading of constructors and methods)

• Parametric polymorphism
• Allows a function or a data type to be written generically, so that it can handle 

values identically without depending on their type
• Generic programming

• Subtype polymorphism (inclusion polymorphism)
• Allows a function to be written to take an object of a certain type T, but also 

work correctly if passed an object that belongs to a type S that is a subtype of T
• Subclassing, inheritance

Lecture #5: Using Polymorphism Well 4



3

OBJECT-ORIENTED PROGRAMMING

Overloading

• Providing more methods with the same name but different 
parameter types

• Statically select most specific matching method of a type

public class Utility {
public String whatAmI(Object o) { return "object"; }
public String whatAmI(String s) { return "string"; }
public boolean isString(Object o) { return false; }

}

public class Overloaded extends Utility {
public boolean isString(String s) { return true; }

}

Lecture #5: Using Polymorphism Well 5

Overloads but NOT overrides inherited method 
boolean isString(Object o) from class 
Utility

OBJECT-ORIENTED PROGRAMMING

Overloading

public static void main(String[] args) {
Overloaded overloaded = new Overloaded();

System.out.println(overloaded.whatAmI(overloaded));
System.out.println(overloaded.whatAmI(new String("test")));

Object o = new String("test");

System.out.println(overloaded.whatAmI(o));
System.out.println(overloaded.isString(new String("test")));
System.out.println(overloaded.isString(o));

Utility utility = overloaded;

System.out.println(utility.isString(new String("test")));
}

Lecture #5: Using Polymorphism Well 6



4

OBJECT-ORIENTED PROGRAMMING

Overloading

public static void main(String[] args) {
Overloaded overloaded = new Overloaded();

System.out.println(overloaded.whatAmI(overloaded));
System.out.println(overloaded.whatAmI(new String("test")));

Object o = new String("test");

System.out.println(overloaded.whatAmI(o));
System.out.println(overloaded.isString(new String("test")));
System.out.println(overloaded.isString(o));

Utility utility = overloaded;

System.out.println(utility.isString(new String("test")));
}

Lecture #5: Using Polymorphism Well 7

object

string

object

true

false

false

OBJECT-ORIENTED PROGRAMMING

Overkill

• Overloading (and overriding together) can be overwhelming

• Avoid overloading whenever possible
• Names are cheap and plentiful

• One place you cannot easily avoid it – constructors
• They all have to have the same name

Lecture #5: Using Polymorphism Well 8



5

OBJECT-ORIENTED PROGRAMMING

• Downcasting (type refinement) is the act of casting a reference of a base class to one of its 
derived class

• When a variable of the base class has a value of the derived class, downcasting is possible

Article a = new DiscountArticle();
DiscountArticle da = (DiscountArticle) a;

• The danger of downcasting is that it is not compile-time check, but rather it is run-time 
check

• Downcasting changes apparent type, so during run-time it must be checked that actual type is a 
subtype of apparent type

public String objectToString(Object o) {
return (String) o;

}

String s = objectToString("a test string");
Object wrong = new Object();
s = objectToString(wrong);

This will only work when the o currently 
holding value is String. In compile-time it is 
OK, because String is subtype of Object

Downcasting

Lecture #5: Using Polymorphism Well 9

This is possible since object referred 
by a is currently holding value of 
DiscountArticle class

This will work since we passed in 
String, so o has value of String

This will fail since we passed in Object
which does not have value of String

OBJECT-ORIENTED PROGRAMMING

Downcasting example

• Class java.util.Vector has reusable methods

public void addElement(Object obj)
public Object elementAt(int i)

public class StringSet {
private Vector elements;
public void insert(String s) {
elements.addElement(s);

}
public String choose() {
return elements.elementAt(0);
return (String) elements.elementAt(0);

}
}

Lecture #5: Using Polymorphism Well 10

Downcasting is required here 

A popular example of a badly 
considered object-oriented design is 
containers of universal supertypes, like 
the Java containers before Java generics 
were introduced, which requires 
downcasting of the contained objects so 
that they can be used again.

Avoid downcasting, since according 
to the LSP, an object-oriented design 
that requires it is flawed.

Some languages, such as OCaml, 
disallow downcasting altogether. In 
many cases downcasting can be 
replaced by using parametric 
polymorphism (e.g. generics in C++, 
C#, Java)



6

OBJECT-ORIENTED PROGRAMMING

The Liskov Substitution Principle

• Functions that use references to base (super) classes must 
be able to use objects of derived (sub) classes without 
knowing it

Lecture #5: Using Polymorphism Well 11

OBJECT-ORIENTED PROGRAMMING

LSP example

• Consider the following Rectangle class

public class Rectangle {
private double width;
private double height;
public Rectangle(double width, double height) {
this.width = width;
this.height = height;

}
public double getWidth() { return this.width; }
public void setWidth(double width) { this.width = width; }
public double getHeight() { return this.height; }
public void setHeight(double height) { this.height = height; }
public double area() { return this.width * this.height; }

}

Lecture #5: Using Polymorphism Well 12



7

OBJECT-ORIENTED PROGRAMMING

LSP example

• Now, think about a Square class. Clearly, a square is a 
rectangle, so the Square class should be derived from the 
Rectangle class

• Observations
• A square does not need both a width and a height as attributes, but 

it will inherit them from Rectangle anyway. So, each Square
object wastes a little memory, but this is not a major concern

• The inherited setWidth() and setHeight() methods are not 
really appropriate for a Square, since the width and height of a 
square are identical. So, we need to override setWidth() and 
setHeight()

• Having to override these very basic methods is a clue that this might not be 
an appropriate use of inheritance!

Lecture #5: Using Polymorphism Well 13

OBJECT-ORIENTED PROGRAMMING

LSP example

• Here’s the Square class

public class Square extends Rectangle {
public Square(double size) { super(size, size); }
@Override
public void setWidth(double width) {

super.setWidth(width);
super.setHeight(width);

}
@Override
public void setHeight(double height) {

super.setHeight(height);
super.setWidth(height);

}
}

Lecture #5: Using Polymorphism Well 14



8

OBJECT-ORIENTED PROGRAMMING

LSP example

• Everything looks good but check this out!

public class Main {
public static void main(String[] args) {

Rectangle rectangle = new Rectangle(1.0, 1.0);
testLSP(rectangle);
Square square = new Square(1.0);
testLSP(square);

}
public static void testLSP(Rectangle rectangle) {

rectangle.setWidth(4.0);
rectangle.setHeight(5.0);
System.out.println("Width is 4.0 and Height is 5.0, so Area is " +

rectangle.area());
if (rectangle.area() == 20.0)

System.out.println("Looking good!\n");
else

System.out.println("Huh? What kind of rectangle is this?\n");
}

}

Lecture #5: Using Polymorphism Well 15

Now call method testLSP(). 
According to the LSP, it should work 
for either rectangles or squares. Does 
it?

Remember: If B is a subtype of A, 
everywhere the code expects an A, 
a B can be used instead

OBJECT-ORIENTED PROGRAMMING

LSP example

• Test program output

Width is 4.0 and Height is 5.0, so Area is 20.0
Looking good!

Width is 4.0 and Height is 5.0, so Area is 25.0
Huh? What kind of rectangle is this?

• Looks like we violated the LSP!

Lecture #5: Using Polymorphism Well 16



9

OBJECT-ORIENTED PROGRAMMING

LSP example

• What is the problem here? The programmer of the testLSP() method 
made the reasonable assumption that changing the width of a 
Rectangle leaves its height unchanged

• Passing a Square object to such a method results in problems, 
exposing a violation of the LSP

• The Square and Rectangle classes look self consistent and valid. 
Yet a programmer, making reasonable assumptions about the base 
class, can write a method that causes the design model to break down

• Solutions can not be viewed in isolation, they must also be viewed in 
terms of reasonable assumptions that might be made by users of the 
design

Lecture #5: Using Polymorphism Well 17

OBJECT-ORIENTED PROGRAMMING

LSP example

• A mathematical square might be a rectangle, but a Square
object is not a Rectangle object, because the behavior of a 
Square object is not consistent with the behavior of a 
Rectangle object!

• Behaviorally, a Square is not a Rectangle! A Square
object is not polymorphic with a Rectangle object

Lecture #5: Using Polymorphism Well 18



10

OBJECT-ORIENTED PROGRAMMING

The Liskov Substitution Principle

• The Liskov Substitution Principle (LSP) makes it clear that the IS-A 
relationship is all about behavior

• In order for the LSP to hold (and with it the Open-Closed Principle) all 
subclasses must conform to the behavior that clients expect of the base 
classes they use

• For example, usage of downcasting signal there is probably a problem (Why do 
we need explicit subclasses?)

• A subtype must have no more constraints than its base type, since the 
subtype must be usable anywhere the base type is usable

• If the subtype has more constraints than the base type, there would be 
uses that would be valid for the base type, but that would violate one of 
the extra constraints of the subtype and thus violate the LSP!

• The guarantee of the LSP is that a subclass can always be used 
wherever its base class is used! How?

Lecture #5: Using Polymorphism Well 19

OBJECT-ORIENTED PROGRAMMING

Substitution principle guarantee

• How do we know if saying B is a subtype of A is safe?

• If B is a subtype of A, everywhere the code expects A, a B
can be used instead

• Practically: Follow subtyping rules of an OO language

• For any function f(A), if f satisfies its specification when 
passed an object whose actual type is type A, f also satisfies 
its specification when passed an object whose type is B

• Practically: Test whole program functionality related to A for all
subtypes of A

Lecture #5: Using Polymorphism Well 20



11

OBJECT-ORIENTED PROGRAMMING

Subtype condition 1: Signature rule

class A {
RA f(PA p);

}
class B inherit A {
override RB f(PB p);

}

• RB must be a subtype of RA (RB  RA)
• Covariants for results

• PB must be a supertype of PA (PA  PB)
• Contravariants for parameters

Lecture #5: Using Polymorphism Well 21

OBJECT-ORIENTED PROGRAMMING

Subtype condition 1: Signature rule

• OO languages are usually stricter than this, they does not 
allow any variations in types (novariant)

• Overriding method must have the same return and parameter 
types

• For example, in Java
• Versions < 1.5 use overloading in this case, so the methods are 

not actually overridden
• Versions ≥ 1.5 of Java use @Override clause to specify the variant 

method overrides the method from the superclass and in addition 
overriding method can throw fewer exceptions

Lecture #5: Using Polymorphism Well 22



12

OBJECT-ORIENTED PROGRAMMING

Subtype condition 2: Methods rule

• Precondition of the subtype method must be weaker than the 
precondition of the supertype method (preA  preB)

• The rectangle must have its width and height set to calculate its area
• The square must have its width and height set and they must be the same 

to calculate its area
• This means square has stronger precondition for calculating area than 

rectangle. FAIL

• Post condition of the subtype method must be stronger than the 
post condition of the supertype method (postB  postA)

• The article gets actual price as its normal sales price
• The discount article gets actual price as its normal sales price updated by 

the percentage discount
• This means discount article has stronger post condition for getting actual price. 

OK

Lecture #5: Using Polymorphism Well 23

OBJECT-ORIENTED PROGRAMMING

Subtype condition 3: Properties

• Subtypes must preserve all properties described in the 
overview specification of the supertype

• Let q(x) be a property provable about objects x of type T. 
Then q(y) should be provable for objects y of type S where S
 T

• (presuper  postsub)  postsuper

• Example: Let B  A
• If A is immutable data type, can B be mutable?
• If A is mutable data type, can B be immutable?

Lecture #5: Using Polymorphism Well 24



13

OBJECT-ORIENTED PROGRAMMING

Eiffel’s rule

• Another approach to type substitution

• Bertrand Meyer in object-oriented language Eiffel prefers covariant
typing

• The subtype replacement method parameter types must be subtypes of the types 
of the parameters of the supertype method

• The subtype method preconditions must be weaker than the supertype 
method precondition and the subtype post conditions must be stronger 
than the supertype post conditions

• Note that unlike the corresponding Liskov substitution principle, 
(presuper  postsub)  postsuper, there is no need for presuper in the 
covariant rule since postsub  postsuper

Lecture #5: Using Polymorphism Well 25


