
1

OBJECT-ORIENTED PROGRAMMING

Abstract Classes and
Interfaces

Lecture #4

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2025/2026

2

OBJECT-ORIENTED PROGRAMMING

Class hierarchy

• By class inheritance we can model class hierarchy

• Is it good to have one class hierarchy in the system?
• All classes derive from Any, i.e. “classes can be of any type”
• What is in the top of the hierarchy?

Lecture #4: Abstract Classes and Interfaces 3

Any

OBJECT-ORIENTED PROGRAMMING

Advantages of class hierarchy

• We can use polymorphic references to any object in the
system

• Reusable functions work with any objects of the system
• We do not need to rewrite functions

• For example method sell() of class Shop works with both Article and
DiscountArticle

• In the top of the hierarchy we can specify general
(universal) properties of all objects in the system, e.g.

• Clone – duplicating objects
• Copy – copying content of the object to another
• Equal – field-by-field comparison of the objects

Lecture #4: Abstract Classes and Interfaces 4

3

OBJECT-ORIENTED PROGRAMMING

Subtype example

• Class java.util.Vector has reusable method void
addElement(Object obj)

public class StringSet {
private Vector elements;
public void insert(String s) {
this.elements.addElement(s);

}
}

Lecture #4: Abstract Classes and Interfaces 5

Why can we use a String
where an Object is
expected?

OBJECT-ORIENTED PROGRAMMING

Building class hierarchy

• Java (and other object-oriented languages
too) implements general inheritance
structure

• Any class that does not include an
inheritance clause, implicitly inherits
form class Object

• Class Object is a kernel class of Java and
specifies some universal features of all
objects

• In our project Shop and Article classes
implicitly inherit from Object class

Lecture #4: Abstract Classes and Interfaces 6

Object

Shop Article

DiscountArticle

4

OBJECT-ORIENTED PROGRAMMING

Abstract class

• Some classes describe an abstract idea rather than a specific one
• Abstract class is declared as abstract and cannot be instantiated
• Abstract class is just to guarantee that its closed subclasses must

override its abstract methods
• Abstract class declares abstract methods

• They do not have body, they just declare an abstract feature, which must be
overridden in subclasses

public abstract class ClassName {

}

Lecture #4: Abstract Classes and Interfaces 7

OBJECT-ORIENTED PROGRAMMING

Constructors in abstract class

• Do we need a constructor for abstract class?
• Remember the inheritance: At the beginning of each constructor of subclass the

default constructor of superclass is called

• Do not define public constructors in abstract classes
• Constructors with public are for types that can be instantiated. Abstract types can

never be instantiated.

• Do define a protected constructor in abstract classes
• The base class can perform initialization tasks when instances of a derived class

are created

Lecture #4: Abstract Classes and Interfaces 8

5

OBJECT-ORIENTED PROGRAMMING

A class hierarchy abstraction

• What are the supertypes of Square?

• What are the subtypes of Parallelogram?

Lecture #4: Abstract Classes and Interfaces 9

TriangleQuadrangle

Shape

Equilateral

Parallelogram

Equilateral triangle

RhombusRectangle

Square

OBJECT-ORIENTED PROGRAMMING

Reusing implementation

• All shapes reuse (inherit from Shape) an isEquilateral()
method

public class Shape {
...
public boolean isEquilateral() { return false; }
...

}

public class Equilateral extends Shape {
...
@Override
public boolean isEquilateral() { return true; }
...

}

Lecture #4: Abstract Classes and Interfaces 10

6

OBJECT-ORIENTED PROGRAMMING

Is a Rhombus equilateral?

Lecture #4: Abstract Classes and Interfaces 11

TriangleQuadrangle

Shape

Equilateral

Parallelogram
Equilateral triangle

RhombusRectangle

Square

public boolean isEquilateral() {
return false;

}

@Override
public boolean isEquilateral() {
return true;

}

Is equilateral?

Inheritance can be tricky!

OBJECT-ORIENTED PROGRAMMING

Solutions of multiple inheritance
problems
• Java, C#

• Allow multiple supertypes using interfaces, but only one
implementation

• Pro: Safe and simple
• Con: Limits reuse

• C++
• Allows it, let programmers shoot themselves if they want

Lecture #4: Abstract Classes and Interfaces 12

7

OBJECT-ORIENTED PROGRAMMING

Interface

• An interface is the set of methods one object must
implement

• In many ways, interface is very similar to abstract class

public interface InterfaceName {

}

• Unlike abstract class which can also contain non-abstract
methods, interface contains only abstract methods and
constants

Lecture #4: Abstract Classes and Interfaces 13

OBJECT-ORIENTED PROGRAMMING

Interfaces in UML

Lecture #4: Abstract Classes and Interfaces 14

Car

Boat

Submarine

«interface»
Movable

+ left(): void
+ right(): void
+ forward(): void
+ reverse(): void
+ climb(): void
+ dive(): void
+ setSpeed(speed: double): void
+ getSpeed(): double

Car

Boat

Submarine

Movable

Movable

Movable

8

OBJECT-ORIENTED PROGRAMMING

Extending interface
• An object can have many interfaces

• Essentially, an interface is a subset of all the methods that an object implements
• We can inherit only one class, but we can implement many interfaces

public class A extends B implements I1, I2, I3 {
...

}

• Interface can inherit from another interface

public interface A {
void f();

}
public interface B extends A {

void g();
}
public class C implements B {

@Override
public void f() { ... }
@Override
public void g() { ... }

}

Lecture #4: Abstract Classes and Interfaces 15

Class C must implement method
g() from interface B and also
method f() from inherited
interface A

OBJECT-ORIENTED PROGRAMMING

Interfaces as types

• A type is a specific interface of an object

• Different objects can have the same type and the same object
can have many different types

• An object is known by other objects only through its
interface

• Interface is an implementation of subtyping in object-
oriented language

• Describes when one object can be used in place of another object

Lecture #4: Abstract Classes and Interfaces 16

9

OBJECT-ORIENTED PROGRAMMING

Abstract class vs interface

• Why not use abstract class instead of interface?
• In C++, a class can inherit multiple superclasses which is known

multiple inheritance
• Java does not allow multiple inheritance and a class can only have

a single inheritance

• In interface, you cannot include non-abstract methods at
all

• Classes that implement the interface must override every method

• In abstract class, you can mix non-abstract and abstract
methods together

• Subclasses could reuse some non-abstract methods without
override

Lecture #4: Abstract Classes and Interfaces 17

OBJECT-ORIENTED PROGRAMMING

Interface like abstract class

• If a class implements an interface, you must override the
interface’s methods in the class

• You cannot create instances from an interface by using new
operator

• Interface can be a type as well as class

• The purpose of creating interface is because of
polymorphism

Lecture #4: Abstract Classes and Interfaces 18

10

OBJECT-ORIENTED PROGRAMMING

Interface unlike abstract class

• You can have multiple interfaces in one class
• Interface is not designed to be superclass, but interface is

designed to add some behaviors to a class
• A relationship between (abstract) class and class is a strong

relationship and it is known as IS-A relationship
• “A duck is a bird” – It clearly means the duck is really a bird, so the

bird can be a superclass of a duck and it could be either concrete or
abstract class

• A relationship between class and interface is a weak
relationship and it is known as IS-KIND-OF relationship

• “A duck is flyable” – Flyable can never ever be the superclass of
the duck, it just means this duck can fly, so flyable is interface

Lecture #4: Abstract Classes and Interfaces 19

OBJECT-ORIENTED PROGRAMMING

Conventions for interfaces
• Because the interface is just designed to add some behaviors or some features to

classes, usually it contains only one or two general methods

public interface Runnable {
void run();

}

• The reason for this is that interface is not a superclass, so it does not specify who can
use its methods. Generally, its method might be used by everyone

• By Java code convention, the name of interface is usually adjective, because
adjective adds some meaning to a noun

• Runnable, Comparable, Clonable, Accessible

• The interface names for event driven listener are usually ended with Listener
• ActionListener, MouseMotionListener, KeyListener

• Some programmers use the “I” prefix for interface names (Hungarian notation)
• ICommand, IMessage

Lecture #4: Abstract Classes and Interfaces 20

