Quentin Tarantino’s “Learn Java in a Minute”

OBJECT-ORIENTED PROGRAMMING

Abstract Classes and

Interfaces

Lecture #4

doc. Ing. Martin Tomasek, PhD.

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of KoSice

2025/2026




OBJECT-ORIENTED PROGRAMMING

Class hierarchy

* By class inheritance we can model class hierarchy

* Is it good to have one class hierarchy in the system?
 All classes derive from A4ny, i.e. “classes can be of any type”
* What is in the top of the hierarchy?

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Advantages of class hierarchy

* We can use polymorphic references to any object in the
system
* Reusable functions work with any objects of the system
* We do not need to rewrite functions

* For example method sell() of class Shop works with both Article and
DiscountArticle

* In the top of the hierarchy we can specify general
(universal) properties of all objects in the system, e.g.
* Clone — duplicating objects
» Copy — copying content of the object to another
 Equal — field-by-field comparison of the objects

Lecture #4: Abstract Classes and Interfaces




OBJECT-ORIENTED PROGRAMMING

Subtype example

* Class java.util.Vector has reusable method void
addElement(Object obj)

public class StringSet {
private Vector elements;
public void insert(String s) {
this.elements.addElement(s);

}

Why can we use a String
where an Object is
expected?

}

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Building class hierarchy

« Java (and other object-oriented languages Object
too) implements general inheritance
structure

* Any class that does not include an
inheritance clause, implicitly inherits

form class Object Shop Article

* Class Object is a kernel class of Java and
specifies some universal features of all

objects f
* In our project Shop and Article classes — —
implicitly inherit from Object class iscountArticle

Lecture #4: Abstract Classes and Interfaces




OBJECT-ORIENTED PROGRAMMING

Abstract class

* Some classes describe an abstract idea rather than a specific one
» Abstract class is declared as abstract and cannot be instantiated

» Abstract class is just to guarantee that its closed subclasses must
override its abstract methods

» Abstract class declares abstract methods

* They do not have body, they just declare an abstract feature, which must be
overridden in subclasses

public abstract class ClassName {

}

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Constructors 1n abstract class

* Do we need a constructor for abstract class?
* Remember the inheritance: At the beginning of each constructor of subclass the
default constructor of superclass is called
* Do not define public constructors in abstract classes
* Constructors with public are for types that can be instantiated. Abstract types can
never be instantiated.
* Do define a protected constructor in abstract classes

* The base class can perform initialization tasks when instances of a derived class
are created

Lecture #4: Abstract Classes and Interfaces




OBJECT-ORIENTED PROGRAMMING

A class hierarchy abstraction

Triangle . Equilateral

Equilateral triangle

Parallelogram
G

* What are the supertypes of Square?
» What are the subtypes of Parallelogram?

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Reusing implementation

« All she(tipes reuse (inherit from Shape) an isEquilateral()
metho

public class Shape {

5661ic boolean isEquilateral() { return false; }
, ce
public class Equilateral extends Shape {

@Override
public boolean isEquilateral() { return true; }

Lecture #4: Abstract Classes and Interfaces



OBJECT-ORIENTED PROGRAMMING

Is a Rhombus equilateral?

public boolean isEquilateral() {
return false;

@Override
public boolean isEquilateral() {
return true;

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Solutions of multiple inheritance
problems
* Java, C#

+ Allow multiple supertypes using interfaces, but only one
implementation

* Pro: Safe and simple
* Con: Limits reuse
o C++
* Allows it, let programmers shoot themselves if they want

Lecture #4: Abstract Classes and Interfaces




OBJECT-ORIENTED PROGRAMMING

Interface

* An interface is the set of methods one object must
implement

* In many ways, interface is very similar to abstract class

public interface InterfaceName {
}

* Unlike abstract class which can also contain non-abstract
methods, interface contains only abstract methods and
constants

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Interfaces in UML

[ommmmmmmmmmmmm oo Car Movable Car
' O—
«interface»
Movable
+ left(): void
+ right(): void
+ forward(): void Boat Movable Boat

+ reverse(): void
+ climb(): void <]""
+ dive(): void

+ setSpeed(speed: double): void
+ getSpeed(): double

I

Submarine Movable Submarine

Lecture #4: Abstract Classes and Interfaces



OBJECT-ORIENTED PROGRAMMING

Extending interface

* An object can have many interfaces
+ Essentially, an interface is a subset of all the methods that an object implements
* We can inherit only one class, but we can implement many interfaces

public class A extends B implements I1, I2, I3 {
}
 Interface can inherit from another interface

public interface A {

void f();

}

public interface B extends A {
void g();

} 3

public class C implements B { Class C must implement method
@0verride g
public void £ { ... } g() from 1nterfac<=j B an.d also
@override method £ () from inherited
public void g() { ... } interface A

}

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Interfaces as types

* A type is a specific interface of an object

* Different objects can have the same type and the same object
can have many different types

* An object is known by other objects only through its
interface

* Interface is an implementation of subtyping in object-
oriented language
* Describes when one object can be used in place of another object

Lecture #4: Abstract Classes and Interfaces



OBJECT-ORIENTED PROGRAMMING

Abstract class vs interface

* Why not use abstract class instead of interface?

* In C++, a class can inherit multiple superclasses which is known
multiple inheritance

» Java does not allow multiple inheritance and a class can only have
a single inheritance

* In interface, you cannot include non-abstract methods at
all

* Classes that implement the interface must override every method
* In abstract class, you can mix non-abstract and abstract
methods together

» Subclasses could reuse some non-abstract methods without
override

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Interface like abstract class

* [f'a class implements an interface, you must override the
interface’s methods in the class

* You cannot create instances from an interface by using new
operator

* Interface can be a type as well as class

* The purpose of creating interface is because of
polymorphism

Lecture #4: Abstract Classes and Interfaces




OBJECT-ORIENTED PROGRAMMING

Interface unlike abstract class

* You can have multiple interfaces in one class

* Interface is not designed to be superclass, but interface is
designed to add some behaviors to a class

* A relationship between (abstract) class and class is a strong
relationship and it is known as IS-A relationship
* “A duck is a bird” — It clearly means the duck is really a bird, so the

bird can be a superclass of a duck and it could be either concrete or
abstract class

* A relationship between class and interface is a weak
relationship and it is known as IS-KIND-OF relationship

* “A duck is flyable” — Flyable can never ever be the superclass of
the duck, it just means this duck can fly, so flyable is interface

Lecture #4: Abstract Classes and Interfaces

OBJECT-ORIENTED PROGRAMMING

Conventions for interfaces

* Because the interface is just designed to add some behaviors or some features to
classes, usually it contains only one or two general methods

public interface Runnable {
void run();

}

* The reason for this is that interface is not a superclass, so it does not specify who can
use its methods. Generally, its method might be used by everyone

* By Java code convention, the name of interface is usually adjective, because
adjective adds some meaning to a noun

* Runnable, Comparable, Clonable, Accessible

* The interface names for event driven listener are usually ended with Listener
* ActionListener, MouseMotionListener, KeyListener

* Some programmers use the “I”” prefix for interface names (Hungarian notation)
* ICommand, IMessage

Lecture #4: Abstract Classes and Interfaces



