
1

Q: Why do Java developers wear glasses?

A: Because they do not C#!

OBJECT-ORIENTED PROGRAMMING

Subtyping and Inheritance

Lecture #3

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2024/2025

2

OBJECT-ORIENTED PROGRAMMING

Motivation

• Interesting systems are seldom born into an empty world
• Almost always, new software expands on previous developments;

the best way to create it is by imitation, refinement and
combination

• Traditional design methods largely ignored this aspect of system
development

• In object technology it is an essential concern

Lecture #3: Subtyping and Inheritance 3

OBJECT-ORIENTED PROGRAMMING

Motivation

• Reusability
• To avoid rewriting the same code over and over again, wasting

time, introducing inconsistencies and risking errors, we need
techniques to capture the striking commonalities that exist within
groups of similar structures – all text editors, all tables, all file
handlers – while accounting for the many differences that
characterize individual cases

• Extendibility
• The type system in traditional programming languages has the

advantage of guaranteeing type consistency at compile time, but
prohibits combination of elements of diverse forms even in
legitimate cases

Lecture #3: Subtyping and Inheritance 4

3

OBJECT-ORIENTED PROGRAMMING

Subtyping

• Remember our Shop Project from the previous lectures
• Now, let’s use new article type with percentage discount and

changed or new behavior

• DiscountArticle is a subtype of Article
• Article is a supertype of DiscountArticle

DiscountArticle Article

Lecture #3: Subtyping and Inheritance

DiscountArti
cle

Article

5

OBJECT-ORIENTED PROGRAMMING

Subtype substitution

• If B is a subtype of A (B ≤ A), everywhere the code expects
an A, a B can be used instead

• Examples:

Article a = b;

Article a = new Article();
Article a = new DiscountArticle();

DiscountArticle a = new Article();

Lecture #3: Subtyping and Inheritance

What is b?

b must be a subtype of Article
(Note: A is subtype of A)

6

4

OBJECT-ORIENTED PROGRAMMING

Implementation issues

• Subtyping
• Allow one type to be used where another type is expected

• Inheritance
• Reuse implementation of the supertype to implement a subtype

Lecture #3: Subtyping and Inheritance 7

OBJECT-ORIENTED PROGRAMMING

Inheritance

• To implement a subtype, it is often useful to use the
implementation of its supertype

• This is also called subclassing
• In Java (similar in other languages):

class B extends A
B is a subtype of A
B inherits from A

class C implements D
C is a subtype of D

Lecture #3: Subtyping and Inheritance

Both subtyping and
inheritance

Just subtyping

8

5

OBJECT-ORIENTED PROGRAMMING

Inheritance example: Analysis

• Remember our Shop Project from the previous lectures
• We have Shop and Article classes defined to implement articles

selling process

• Now, let’s use new article type with percentage discount and
changed or new behavior

• New discount article will use the same characteristics and behavior
as normal articles

• There are also new characteristics and extended behavior for the
discount article

• Percentage discount value
• Article price calculation must apply the discount

Lecture #3: Subtyping and Inheritance 9

OBJECT-ORIENTED PROGRAMMING

Inheritance example: Design

• By inheritance we can create new classes based on existing classes
• New class DiscountArticle inherits all characteristics and behaviors of class
Article and also defines some new

Lecture #3: Subtyping and Inheritance

DiscountArticle

- discount: double

+ DiscountArticle(name: String, quantity: int, price: double, discount: double)

+ setDiscount(discount: double): void

+ getDiscount(): double

+ getPrice(): double

Article

- name: String

- quantity: int

- price: double

+ Article(name: String, quantity: int, price: double)

+ update(quantity: int): void

+ getPrice(): double

10

6

OBJECT-ORIENTED PROGRAMMING

Terminology remarks

• Article
• Main class, parent class, ancestor, superclass

• DiscountArticle
• Inherited class, derived class, child (daughter) class, descendant,

subclass

• Inheritance is also called subclassing

Lecture #3: Subtyping and Inheritance 11

OBJECT-ORIENTED PROGRAMMING

Using inheritance

• We can define new classes easily, we do not need to rewrite
whole behavior

• We can use new object-oriented notion of types –
polymorphism

• What type is object butter of in our example?
• The reference to the object butter is of type Article, but the object itself

is from class DiscountArticle
• Object butter can be used both as Article and DiscountArticle

types

• Objects from subclasses can be always used as objects from their
superclasses

Lecture #3: Subtyping and Inheritance 12

7

OBJECT-ORIENTED PROGRAMMING

Using inheritance

• Derived classes can define new characteristics and behaviors
• New characteristics and behaviors can be used only with derived class
• For example in our example we cannot call butter.getDiscount(), because

the reference butter is of type Article and getDiscount() is behavior of
DiscountArticle

• We must take care what types do we use (superclass or subclass?) with the object

• Derived classes can rewrite (override) existing behaviors
• Overridden behaviors are always used according the creation class of the object
• For example in our example we can call butter.getPrice(), even if the

reference to the butter object is of type Article, the behavior from class
DiscountArticle is used

• Note: Object-oriented languages (Java, C++, C# etc.) have various possibilities
to rewrite functions in subclasses

Lecture #3: Subtyping and Inheritance 13

OBJECT-ORIENTED PROGRAMMING

Binding

• At a certain point, the method invocation is bound to the method
definition, that is, a commitment is made to execute certain code

• Though binding often occurs at compile-time, the binding of a method
invocation to its definition cannot be made till run-time for a
polymorphic reference

• Consider

obj.doSomthing();

• If obj is polymorphic, it can refer to different types of objects at
different times, thus calling a different definition of doSomething()
each time it is invoked

Lecture #3: Subtyping and Inheritance 14

8

OBJECT-ORIENTED PROGRAMMING

Late or dynamic binding

• For polymorphic references, the method definition that is
used depends on the object that is being referred by the
reference variable at that moment

• This binding decision cannot be made until run-time and is
thus called late or dynamic binding

• Though it is less efficient for bindings to occur at run-time
rather than compile-time, it is considered to be an acceptable
overhead given the flexibility of a polymorphic reference

• There are two ways to create a polymorphic reference
• using inheritance
• using an interface

Lecture #3: Subtyping and Inheritance 15

OBJECT-ORIENTED PROGRAMMING

Overridden method dispatch

• DiscountArticle is a subtype of Article

• If DiscountArticle overrides method getPrice() of Article
which method should be called?

Article a = new Article();
DiscountArticle da = new DiscountArticle();
double p;
p = a.getPrice();
p = da.getPrice();
a = da;
p = a.getPrice();

Lecture #3: Subtyping and Inheritance

Calls class Article’s
getPrice() method

Calls class DiscountArticle’s
getPrice() method

Calls class DiscountArticle’s
getPrice() method

16

9

OBJECT-ORIENTED PROGRAMMING

Dynamic dispatch

• Search for the method up the type hierarchy, starting from
the actual (dynamic) type of the object

Article a = new Article();
DiscountArticle da = new DiscountArticle();
double p;
p = a.getPrice();
p = da.getPrice();

Lecture #3: Subtyping and Inheritance

a

da

Article

DiscountArticle
apparent type

actual type

actual type

apparent type

17

OBJECT-ORIENTED PROGRAMMING

Now apparent type of a is Article and
actual type of a is DiscountArticle

Dynamic dispatch

• Search for the method up the type hierarchy, starting from
the actual (dynamic) type of the object

Article a = new Article();
DiscountArticle da = new DiscountArticle();
double p;
p = a.getPrice();
p = da.getPrice();
a = da;
p = a.getPrice();

Lecture #3: Subtyping and Inheritance

a

daapparent type

actual type

actual type

Article

DiscountArticle

apparent type

18

10

OBJECT-ORIENTED PROGRAMMING

Apparent and actual types

• Apparent types are associated with declarations
• They never change

• Actual types are associated with object
• They are always a subtype of the apparent type

• Compiler does type checking using apparent type

• During run-time the method dispatch is using actual type

Lecture #3: Subtyping and Inheritance 19

OBJECT-ORIENTED PROGRAMMING

Information hiding in inheritance

• All characteristics and behaviors are inherited to new class

• We can use accessibility modificators to control the direct
accessibility of inherited properties

• public – properties are accessible from outer classes and all
derived classes

• private – properties are accessible only in the class it is defined
• protected – properties are not accessible from outer classes, but

still accessible from derived classes

Lecture #3: Subtyping and Inheritance 20

11

OBJECT-ORIENTED PROGRAMMING

Constructing object of derived class

• At the beginning of each constructor of subclass the default
constructor of superclass is called

• In our example when creating object of DiscountArticle class
the default Article() constructor within DiscountArticle()
constructor is called

• When we want to call other than default constructor we can use
super keyword to call different overloaded version of constructor,
as we can see in our example

public DiscountArticle(String name, int quantity, double price, double discount) {
super(name, quantity, price);
this.discount = discount;

}

Lecture #3: Subtyping and Inheritance 21

OBJECT-ORIENTED PROGRAMMING

Using the super keyword

• Accessing overridden superclass members
• If your method overrides one of its superclassʼs methods, you can invoke the

overridden method through the use of the keyword super

@Override
public double getPrice() {
return super.getPrice() * (1.0 - this.discount);

}

• Subclass constructor
• As mentioned before when we want to invoke superclassʼs constructor

public DiscountArticle(String name, int quantity, double price, double discount) {
super(name, quantity, price);
this.discount = discount;

}

Lecture #3: Subtyping and Inheritance 22

12

OBJECT-ORIENTED PROGRAMMING

Methods of reuse

• Another way of functionality reuse is objects composition

• One of the main object-oriented principle is to favor
composition over inheritance

• Both composition and inheritance support
• Reusability
• Extendibility

Lecture #3: Subtyping and Inheritance 23

OBJECT-ORIENTED PROGRAMMING

Composition

• Method of reuse in which new functionality is obtained by creating an
object composed of other objects

• The new functionality is obtained by delegating functionality to one of
the objects being composed

• Sometimes called aggregation or containment, although some authors
give special meanings to these terms

• Aggregation – when one object owns or is responsible for another object and
both objects have identical lifetimes or when one object has a collection of
objects that can exist on their own

• Containment – a special kind of composition in which the contained object is
hidden from other objects and access to the contained object is only via the
container object

Lecture #3: Subtyping and Inheritance 24

13

OBJECT-ORIENTED PROGRAMMING

Implementation of composition

• Composition can be
• By reference
• By value

• C++ allows composition by value or by reference

• But in Java or C# all we have are object references

Lecture #3: Subtyping and Inheritance 25

OBJECT-ORIENTED PROGRAMMING

Advantages/disadvantages of composition

• Advantages
• Contained objects are accessed by the containing class solely through their

interfaces
• “Black-box” reuse, since internal details of contained objects are not visible
• Good encapsulation
• Fewer implementation dependencies
• Each class is focused on just one task
• The composition can be defined dynamically at run-time through objects

acquiring references to other objects of the same type

• Disadvantages
• Resulting systems tend to have more objects
• Interfaces must be carefully defined in order to use many different objects as

composition blocks

Lecture #3: Subtyping and Inheritance 26

14

OBJECT-ORIENTED PROGRAMMING

Advantages/disadvantages of inheritance

• Advantages
• New implementation is easy, since most of it is inherited
• Easy to modify or extend the implementation being reused

• Disadvantages
• Breaks encapsulation, since it exposes a subclass to implementation

details of its superclass
• “White-box” reuse, since internal details of superclasses are often

visible to subclasses
• Subclasses may have to be changed if the implementation of the

superclass changes
• Implementations inherited from superclasses can not be changed at

runtime

Lecture #3: Subtyping and Inheritance 27

OBJECT-ORIENTED PROGRAMMING

Coad’s rules

• Use inheritance only when all of the following criteria are
satisfied

• A subclass expresses is a special kind of and not is a role played
by a

• An instance of a subclass never needs to become an object of
another class

• A subclass extends, rather than overrides or nullifies, the
responsibilities of its superclass

• A subclass does not extend the capabilities of what is merely a
utility class

• For a class in the actual problem domain, the subclass specializes a
role, transaction or device

Lecture #3: Subtyping and Inheritance 28

15

OBJECT-ORIENTED PROGRAMMING

Inheritance vs. composition: Example 1

Lecture #3: Subtyping and Inheritance

Person

name

address

Passenger

frequentFlyerId

reservation

Agent

password

authorizationLevel

AgentPassenger

29

OBJECT-ORIENTED PROGRAMMING

Inheritance vs. composition: Example 1

• “Is a special kind of” not “is a role played by a”
• Fail. A passenger is a role a person plays. So is an agent.

• Never needs to transmute
• Fail. An instance of a subclass of Person could change from Passenger to
Agent to AgentPassenger over time

• Extends rather than overrides or nullifies
• Pass.

• Does not extend a utility class
• Pass.

• Within the problem domain, specializes a role, transaction or device
• Fail. A person is not a role, transaction or device.

• Inheritance does not fit here!

Lecture #3: Subtyping and Inheritance 30

16

OBJECT-ORIENTED PROGRAMMING

Inheritance vs. composition: Example 2

• No inheritance at all

Lecture #3: Subtyping and Inheritance

Person

- name

- address

- passenger

- agent

Passenger

- frequentFlyerId

- reservation

Agent

- password

- authorizationLevel

31

OBJECT-ORIENTED PROGRAMMING

Inheritance vs. composition: Example 3

Lecture #3: Subtyping and Inheritance

Person

- name

- address

- role

Passenger

- frequentFlyerId

- reservation

Agent

- password

- authorizationLevel

PersonRole

32

17

OBJECT-ORIENTED PROGRAMMING

Inheritance vs. composition: Example 3

• “Is a special kind of” not “is a role played by a”
• Pass. Passenger and agent are special kinds of person roles.

• Never needs to transmute
• Pass. A Passenger object stays a Passenger object; the same is true for an
Agent object.

• Extends rather than overrides or nullifies
• Pass.

• Does not extend a utility class
• Pass.

• Within the Problem Domain, specializes a role, transaction or device
• Pass. A person role is a type of role.

• Inheritance ok here!

Lecture #3: Subtyping and Inheritance 33

OBJECT-ORIENTED PROGRAMMING

Inheritance vs. composition summary

• Both composition and inheritance are important methods of
reuse

• Inheritance was overused in the early days of object-oriented
development

• Over time we have learned that designs can be made more
reusable and simpler by favoring composition

• Of course, the available set of composable classes can be
enlarged using inheritance

• So composition and inheritance work together
• But our fundamental principle is

• Favor composition over inheritance

Lecture #3: Subtyping and Inheritance 34

