
1

OBJECT-ORIENTED PROGRAMMING

State and Behavior of the 
Object
Lecture #2

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2024/2025



2

OBJECT-ORIENTED PROGRAMMING

Encapsulation

• An abstraction focuses on the outside view of an object 
(interface of the object) and separates an object’s behavior 
from its implementation

• Classes should be opaque
• Classes should not expose their internal implementation 

details

Lecture #2: State and Behavior of the Object 3

OBJECT-ORIENTED PROGRAMMING

State and behavior of the object

• Instance variables of the class represent state of the object
• Internal property which should be controlled only by the object 

itself
• Manipulated only by the behavior of the object

• Methods of the class represent behavior of the object
• Some behaviors are internal and controlled only within the object
• Some behaviors represents interaction of the object with other 

objects
• This forms the interface of the object

Lecture #2: State and Behavior of the Object 4



3

OBJECT-ORIENTED PROGRAMMING

Practical information hiding

• General principle of information hiding: Use private members and 
appropriate public accessors and mutators (get/set methods) wherever 
possible

• Wrong implementation

public double price;

• Correct implementation

private double price;
public double getPrice() {
return this.price;

}
public void setPrice(double price) {
this.price = price;

}

Lecture #2: State and Behavior of the Object 5

OBJECT-ORIENTED PROGRAMMING

Accessibility modificators

• Accessibility of each class member can be defined by the 
accessibility modificators

• public
• Accessible from the outside of the object
• Another object can freely access this member

• private
• Accessible only from the internal members (methods) of the object 

and cannot be directly exposed to other objects
• Private members are hidden inside the object

Lecture #2: State and Behavior of the Object 6



4

OBJECT-ORIENTED PROGRAMMING

Using accessors and mutators

• You can put constraints on values

public void setPrice(double newPrice) {
if (newPrice < 0.0) {

sendErrorMessage(...);
newPrice = Math.abs(newPrice);

}
this.price = newPrice;

}

• If users of your class accessed the fields directly, then they would each 
be responsible for checking constraints

Lecture #2: State and Behavior of the Object 7

OBJECT-ORIENTED PROGRAMMING

Using accessors and mutators

• You can change your internal representation without 
changing the interface

public void setPriceInUSD(double newPrice) {
this.price = convert(newPrice);

}
public void setPriceInEUR(double newPrice) {

this.price = newPrice;
}

Lecture #2: State and Behavior of the Object 8



5

OBJECT-ORIENTED PROGRAMMING

Using accessors and mutators

• You can perform arbitrary side effects

public void setPrice(double newPrice) {
this.price = newPrice;
notifyObservers();

}

• If users of your class accessed the fields directly, then they 
would each be responsible for executing side effects

Lecture #2: State and Behavior of the Object 9

OBJECT-ORIENTED PROGRAMMING

Using the this keyword

• this is a reference to the current object (the object whose 
method or constructor is being called)

• You can refer to any member of the current object from within an 
instance method or a constructor by using this

• Object-oriented programming languages implement 
reference to the current object

• To access the shadowed class members
• To have a reference to itself

Lecture #2: State and Behavior of the Object 10



6

OBJECT-ORIENTED PROGRAMMING

Using this with instance variables

• The most common reason for using the this keyword is because an instance variable 
is shadowed by a method or constructor parameter

• For example, the Article class could be written like this 

public class Article {
private String name;
private int quantity;
private double price;

public Article(String newName, int newQuantity, double newPrice) {
name = newName;
quantity = newQuantity;
price = newPrice;

}
...

}

Lecture #2: State and Behavior of the Object 11

OBJECT-ORIENTED PROGRAMMING

Using this with instance variables

• But it has been written like this

public class Article {
private String name;
private int quantity;
private double price;

public Article(String name, int quantity, double price) {
this.name = name;
this.quantity = quantity;
this.price = price;

}
...

}

• Each argument to the constructor shadows one of the instance variables – inside the 
constructor price is a local copy of the constructor’s first argument

• To refer to the Article member price, the constructor must use this.price
Lecture #2: State and Behavior of the Object 12



7

OBJECT-ORIENTED PROGRAMMING

Using this with constructor
• From within a constructor, you can also use the this keyword to call another 

constructor in the same class
• Doing so is called an explicit constructor invocation

public class Article {
private String name;
private int quantity;
private double price;

public Article() {
this("", 0, 0.0);

}

public Article(String name, int quantity, double price) {
this.name = name;
this.quantity = quantity;
this.price = price;

}
...

}

Lecture #2: State and Behavior of the Object 13

OBJECT-ORIENTED PROGRAMMING

Using this with constructor

• There are two constructors for this class to initialize instance 
variables

• The no-argument constructor provides default values for all 
instance variables

• Because initial values are not provided by arguments
• The no-argument constructor calls the three-arguments constructor 

with three default values

• If present, the invocation of another constructor must be the 
first line in the constructor

Lecture #2: State and Behavior of the Object 14



8

OBJECT-ORIENTED PROGRAMMING

Tends to complicate

• The existence of static members tends to break up the simple 
structures that we have discussed in previous lectures

• Static memory mode contrasts with heap memory mode
• Similar in other languages (e.g. C, static variables vs. dynamic 

memory allocation)

• Support of global variables and global methods that can be 
accessed without creating objects of a class

Lecture #2: State and Behavior of the Object 15

OBJECT-ORIENTED PROGRAMMING

Class members

• Static variables
• Use static keyword to define a static variable of a class
• Static variable uses static memory mode

• Static methods
• Use static keyword to define a static method of a class
• Static method can be called directly, out of any class instances

Lecture #2: State and Behavior of the Object 16



9

OBJECT-ORIENTED PROGRAMMING

Why using static variables?

• Static variable is like a global variable

• Value of the static variable is stored in static memory which 
is common for all objects of the class

• Java creates only one copy for a static variable which can be used 
even if the class is never instantiated

• Encapsulation is not broken, it is common only for objects of the 
class

• This feature is useful when we want to create a variable 
common to all instances of a class

• Example
• One of the most common example is to have a variable that could 

keep a count of how many objects of a class have been created
Lecture #2: State and Behavior of the Object 17

OBJECT-ORIENTED PROGRAMMING

Static variables – Example

Article bread = new Article("Bread", 100, 1.5);

Article milk = new Article("Milk", 150, 2.0);

Lecture #2: State and Behavior of the Object

NEW

id
name

quantity
price

counter

NEW

id
name

quantity
price

St
at

ic
 m

em
or

y

D
yn

am
ic

 m
em

or
y

18



10

OBJECT-ORIENTED PROGRAMMING

Instance vs. static variables

• Instance variables
• One copy per object
• Every object has its own instance variable, e.g. id, name, 
quantity, price

• Static variables
• One copy per class (all instances)
• Every object use the same static variable, e.g. counter

Lecture #2: State and Behavior of the Object 19

OBJECT-ORIENTED PROGRAMMING

Constants in Java

• Static variables are mostly used as constants with final keyword in 
the declaration

public class MaxUnits {
public static final int MAX_UNITS = 25;

}

• For example
• Math.PI
• Math.E
• Double.POSITIVE_INFINITY
• Double.NEGATIVE_INFINITY

Lecture #2: State and Behavior of the Object 20



11

OBJECT-ORIENTED PROGRAMMING

Static methods

• A class can have methods that are defined as static (e.g.
main method)

• Static methods can be accessed without using objects
• Also, there is no need to create instances

• Static methods are generally used to group related library 
functions that don’t depend on data members of its class

• For example, Math library functions

Lecture #2: State and Behavior of the Object 21

OBJECT-ORIENTED PROGRAMMING

Static methods restrictions

• They can only call other static methods

• They can only access static data

• They cannot refer to this or super in anyway

Lecture #2: State and Behavior of the Object 22



12

OBJECT-ORIENTED PROGRAMMING

Guidelines for use of static variables

• Do not ever use static variables without declaring them final 
unless you understand exactly why you are declaring them 
static

• Static final variables, or constants, are often very appropriate

• There are only few situations where the use of a non-final 
static variable (global variable) might be appropriate

• One appropriate use might be to count the number of objects 
instantiated from a specific class

• I suspect there are a few other appropriate uses as well
• Always reduce the usage of global variables as much as possible

Lecture #2: State and Behavior of the Object 23

OBJECT-ORIENTED PROGRAMMING

Guidelines for use of static methods

• Do not declare methods static if there is any requirement for the 
method to remember anything from one invocation to the next

• There is no way to use the instance variables in static methods

• The method should probably also be self-contained
• All information that the method needs to do its job should either come from incoming 

parameters or from final static member variables (constants)

• The method probably should not depend on the values stored in non-
final static member variables, which are subject to change over time

• A static method only has access to other static members of the class, so it cannot depend 
on instance variables defined in the class

• An example of a static method is the sqrt() method of the Math class. This method 
computes and “returns the correctly rounded positive square root of a double” where the 
double value is provided as a parameter to the method. Each time the method is invoked, 
it completes its task and does not attempt to save any values from that invocation to the 
next. Furthermore, it gets all the information that it needs to do its job from an incoming 
parameter

Lecture #2: State and Behavior of the Object 24



13

OBJECT-ORIENTED PROGRAMMING

Example: Implementation of Singleton 
design pattern
• Singleton is a design pattern that restricts the instantiation of a class to 

one object
• This is useful when exactly one object is needed to coordinate actions across the 

system

public class MyClass {
private static final MyClass uniqueInstance = new MyClass();

...

private MyClass() { ... }

public static MyClass getInstance() {
return uniqueInstance;

}

...
}

Lecture #2: State and Behavior of the Object 25


