
1

I don’t think object-oriented programming is a
structuring paradigm that meets my standards
of elegance.

Edsger W. Dijkstra

OBJECT-ORIENTED PROGRAMMING

Class and Object

Lecture #1

doc. Ing. Martin Tomášek, PhD.
Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

2025/2026



2

OBJECT-ORIENTED PROGRAMMING

(Imperative) Programming concepts

• Structured programming
• Program flow structures (sequence, selection, iteration)
• Subroutines (macros, procedures, functions)
• Data structures (array, record)

• Modular programming
• Separation of concerns
• Definition of interfaces (declaration, implementation)
• Improvement of maintainability 

• Object-oriented programming
• Objects (data fields + methods) and their interactions
• Object-oriented techniques (abstraction, information hiding, encapsulation, 

inheritance, polymorphism)
• Improvement of code reuse

Lecture #1: Class and Object 3

OBJECT-ORIENTED PROGRAMMING

Motivation for object orientation

• How to deal with complexity?
• Abstraction

• How to define the scope of data inside data structures 
(objects)?

• Encapsulation

• How to protect parts of the program from extensive 
modification based on design changes?

• Information hiding

• How to reuse existing code with little or no modification?
• Subtyping and inheritance

• How to work with variables (objects) using different types?
• Polymorphism

Lecture #1: Class and Object 4



3

OBJECT-ORIENTED PROGRAMMING

Abstraction

• Simplifying complex reality by modeling objects appropriate to 
the problem

• An abstraction focuses on the outside view of an object and 
separates an object’s behavior from its implementation

Lecture #1: Class and Object 5

OBJECT-ORIENTED PROGRAMMING

Abstract data types

• Mathematical model for a class of data structures (objects) 
that have similar behavior

• Abstract data types simplify the description of abstract 
algorithms

• In programming languages usually implemented as data types, data 
structures, modules

• One of the formalizing concept of object-oriented 
programming

Lecture #1: Class and Object 6



4

OBJECT-ORIENTED PROGRAMMING

Abstract data types in object-oriented 
programming
• Class

• Defines abstract characteristics of things (objects)
• It includes properties (data fields) and capabilities (functions and 

procedures)

• Object
• One version (exemplar) of the class with concrete version of 

properties

Lecture #1: Class and Object 7

OBJECT-ORIENTED PROGRAMMING

Object example: Analysis

• Example: Let’s have a shop that sales articles and keeps the 
track of total turnover

• What data structure do we need?
• Shop

• Properties: name, list of articles, total turnover
• Capabilities: create new shop, sell article, get total turnover

• Article
• Properties: name, quantity, price
• Capabilities: create new item, update article quantity (after sale), get price

• How to represent list of articles?
• Dynamic data structures, e.g. linked list

Lecture #1: Class and Object 8



5

OBJECT-ORIENTED PROGRAMMING

Object example: Design

• For the design we will use UML

• We design two classes with following characteristics, behaviors and 
interactions

• Data fields inside classes are bound and can be maintained only by the 
object of that class itself (encapsulation)

Article

- name: String

- quantity: int

- price: double

+ Article(name: String, quantity: int, price: double)

+ update(quantity: int): void

+ getPrice(): double

Shop

- name: String

- turnover: double

+ Shop(name: String, articles: List<Articles>)

+ sell(article: Article): void

+ getTurnover(): double

- articles

Lecture #1: Class and Object 9

OBJECT-ORIENTED PROGRAMMING

What are software objects?
• Building blocks of software systems

• A program is a collection of interacting objects
• Objects cooperate to complete a task
• To do this, they communicate by sending “messages” to each other

• Objects model tangible things
• A shop
• An article

• Objects model conceptual things
• An inventory
• An order

• Objects model processes
• Calculating sales report for the shop owner
• Sorting articles in the stock

• Objects have
• Capabilities: what they can do, how they behave
• Properties: features that describe them

Lecture #1: Class and Object 10



6

OBJECT-ORIENTED PROGRAMMING

Objects capabilities (behavior)

• Objects’ capabilities allow them to perform specific actions

• Capabilities are also called behaviors and can be
• Constructors: establish initial state of object’s properties
• Commands: change object’s properties
• Queries: provide responses based on object’s properties

• Example: shops are capable of performing specific actions
• Constructor: be created
• Commands: sell article
• Queries: get total turnover

• Implement capabilities as methods
• Functions and procedures bound to the class

Lecture #1: Class and Object 11

OBJECT-ORIENTED PROGRAMMING

Object properties (state)

• Properties determine how an object acts
• Properties can be

• Attributes: things that help describe an object
• Components: things that are “part of” an object
• Associations: things an object knows about, but are not part of that object

• State: collection of all an object’s properties (changes if any property 
changes)

• Some properties do not change, e.g., name of the article
• Others do, e.g., quantity of the article

• Example: properties of shop
• Attributes: name, total turnover
• Components: articles
• Associations: e.g. a shop can be associated with a chain of shops

• Implement properties as instance variables
• Variables bound to the class

Lecture #1: Class and Object 12



7

OBJECT-ORIENTED PROGRAMMING

Object instantiation

• Object instantiation creates an object instance of a class
• Constructor is the first message: creates the instance

Shop grocery = new Shop("Grocery", articles);

• Reserved word new makes a new object instance, and call its 
constructor

• Full name of constructor is given after new; since constructors have 
same name as their classes, this specifies the class to instantiate

• Statements defined in constructor are executed when the 
constructor is called

Lecture #1: Class and Object 13

OBJECT-ORIENTED PROGRAMMING

Constructor

• Constructor is a special method that is called whenever a 
class is instantiated (created)

• Another object sends a message that calls a constructor
• A constructor is the first message an object receives and cannot be 

called subsequently
• Establishes initial state of properties for the object instance
• Constructor has always the same name as class and has no return 

type

• If you do not define any constructors for a class, the default 
constructor is called

• Default constructor will initialize each instance variable to its 
default value

• This is not a good idea – always write your own constructor for 
each class and always give each instance variable a value

Lecture #1: Class and Object 14



8

OBJECT-ORIENTED PROGRAMMING

Constructors overloading

• It’s common to overload constructors
• Define multiple constructors which differ in number and/or types of 

parameters

• The compiler determines which constructor to call based on 
the number and the type of arguments in a call statement

Lecture #1: Class and Object 15

OBJECT-ORIENTED PROGRAMMING

Memory management

• Remember, you are always working with references!

• There are three commonly found modes of memory management
• Static
• Stack-based
• Free (heap-based)

Object of shop
“Grocery” in the

memory

Shop grocery = new Shop("Grocery", articles);

grocery

Shop anotherGrocery = grocery;

Object of shop
“Grocery” in the

memory

grocery

anotherGrocery

grocery = null;

Object of shop
“Grocery” in the

memory

grocery

anotherGrocery

anotherGrocery = null;

Object of shop
“Grocery” in the

memory

grocery

anotherGrocery

NEW

Lecture #1: Class and Object 16



9

OBJECT-ORIENTED PROGRAMMING

Static memory mode

• An entity may become attached to at most one run-time 
object during the entire execution of the software

• Allocate space for all objects (and attach them to the corresponding 
entities) once and for all, at program loading time or at the 
beginning of execution

• Problems
• Recursion is permitted
• Cannot use dynamic data structures

Lecture #1: Class and Object 17

OBJECT-ORIENTED PROGRAMMING

Stack-based mode

• An entity may at run-time become attached to several objects 
in succession, and the run-time mechanisms allocate and 
deallocate these objects in last-in, first-out order

• When an object is deallocated, the corresponding entity becomes 
attached again to the object to which it was previously attached, if 
any

• Problem
• Still cannot use dynamic data structures

Lecture #1: Class and Object 18



10

OBJECT-ORIENTED PROGRAMMING

Free (heap-based) mode

• An entity may become successively attached to any number 
of objects; the pattern of object creations is usually not 
predictable at compile time

• The free mode allows us to create the sophisticated dynamic data 
structures

Lecture #1: Class and Object 19

OBJECT-ORIENTED PROGRAMMING

Space reclamation

• The ability to create objects dynamically, raises the question of what to 
do when an object becomes unused

• Is it possible to reclaim its memory space, so as to use it again for one or more 
new objects in later creation instructions?

• Static mode
• No problem with deallocation of objects

• Stack-based mode
• Block-structured language make things particularly simple: object allocation 

occurs at the same time for all entities declared in a given block, allowing the use 
of a single stack for a whole program (remember local variables in C language)

• Free mode
• The pattern of object creation is unknown at compile time it is not possible to 

predict when a given object may become useless
• For example in C language programmers are forced to use malloc() and 
free() to allocate and deallocate the memory

Lecture #1: Class and Object 20



11

OBJECT-ORIENTED PROGRAMMING

Reachability problem

• We can easily get an unreachable problem after detachment 
of the reference

grocery = null;

Object of shop
“Grocery” in the

memory
grocery

Object of shop
“Grocery” in the

memory
grocery

There is no reference to this instance 
anymore. This instance becomes 
unreachable and useless!

How to get it out from the memory?

Lecture #1: Class and Object 21

OBJECT-ORIENTED PROGRAMMING

Memory management problem in object-
oriented model
• The problem of memory management arises from the unpredictability 

of the operations which affect the set of reachable instances: creation 
and detachment

• Such a prediction is possible in some cases, for data structures managed in a 
strictly controlled way (e.g. remember linked list in C language)

• Three general attitudes are possible as to objects that become 
unreachable

• Casual approach – Ignore the problem and hope that there will be enough 
memory to accommodate all objects, reachable or not (hardly usable!)

• Manual reclamation – Ask developers to include in every application an 
algorithm that looks for unreachable objects, and give them mechanisms to free 
the corresponding memory (e.g. C++ with command delete)

• Automatic garbage collection – Include in the development environment (as 
part of the so-called runtime system) automatic mechanisms that will detect and 
reclaim unreachable objects (e.g. Java, C#)

Lecture #1: Class and Object 22



12

OBJECT-ORIENTED PROGRAMMING

Take care about memory

• “I say a big NO! Leaving an unreferenced object around is BAD 
PROGRAMMING. Object pointers ARE like ordinary pointers – if you 
[allocate an object] you should be responsible for it, and free it when 
its finished with (didn’t your mother always tell you to put your toys 
away when you’d finished with them?).” (I. Stephenson, 1991)

• “An object-oriented program without automatic memory management 
is roughly the same as a pressure cooker without a safety valve: sooner 
or later the thing is sure to blow up!” (M. Schweitzer, L. Strether, 
1993)

Lecture #1: Class and Object 23


