I don’t think object-oriented programming is a
structuring paradigm that meets my standards
of elegance.

Edsger W. Dijkstra

OBJECT-ORIENTED PROGRAMMING

Class and Object

Lecture #1

doc. Ing. Martin Tomasek, PhD.

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of Kosice

2025/2026




OBJECT-ORIENTED PROGRAMMING

(Imperative) Programming concepts

* Structured programming
* Program flow structures (sequence, selection, iteration)
* Subroutines (macros, procedures, functions)
* Data structures (array, record)

* Modular programming
* Separation of concerns
* Definition of interfaces (declaration, implementation)
* Improvement of maintainability

* Object-oriented programming
* Objects (data fields + methods) and their interactions

* Object-oriented techniques (abstraction, information hiding, encapsulation,
inheritance, polymorphism)

* Improvement of code reuse

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Motivation for object orientation

* How to deal with complexity?
* Abstraction
* How to define the scope of data inside data structures
(objects)?
* Encapsulation
* How to protect parts of the program from extensive
modification based on design changes?
* Information hiding
* How to reuse existing code with little or no modification?
* Subtyping and inheritance
* How to work with variables (objects) using different types?
* Polymorphism

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Abstraction

 Simplifying complex reality by modeling objects appropriate to
the problem

* An abstraction focuses on the outside view of an object and
separates an object’s behavior from its implementation

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Abstract data types

* Mathematical model for a class of data structures (objects)
that have similar behavior

 Abstract data types simplify the description of abstract
algorithms

* In programming languages usually implemented as data types, data
structures, modules

* One of the formalizing concept of object-oriented
programming

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Abstract data types in object-oriented
programming
* Class

* Defines abstract characteristics of things (objects)

* It includes properties (data fields) and capabilities (functions and
procedures)

* Object

* One version (exemplar) of the class with concrete version of
properties

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Object example: Analysis

* Example: Let’s have a shop that sales articles and keeps the
track of total turnover

* What data structure do we need?
* Shop
* Properties: name, list of articles, total turnover
* Capabilities: create new shop, sell article, get total turnover
* Article
* Properties: name, quantity, price
 Capabilities: create new item, update article quantity (after sale), get price

* How to represent list of articles?
* Dynamic data structures, e.g. linked list

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Object example: Design

* For the design we will use UML

* We design two classes with following characteristics, behaviors and
interactions

Article
Shop

- name: String
- name: String N N N
- articles - quantity: int
- turnover: double

- price: double

+ Shop(name: String, articles: List<Articles>) - " " - "
+ Article(name: String, quantity: int, price: double)
+ sell(article: Article): void . . .
+ update(quantity: int): void

+ getTurnover(): double .
+ getPrice(): double

* Data fields inside classes are bound and can be maintained only by the
object of that class itself (encapsulation)

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

What are software objects?

* Building blocks of software systems
* A program is a collection of interacting objects
* Objects cooperate to complete a task
* To do this, they communicate by sending “messages” to each other

* Objects model tangible things
* Ashop
* Anarticle

* Objects model conceptual things
* An inventory
* An order

* Objects model processes
* Calculating sales report for the shop owner
» Sorting articles in the stock

* Objects have

» Capabilities: what they can do, how they behave
* Properties: features that describe them

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Objects capabilities (behavior)

* Objects’ capabilities allow them to perform specific actions

* Capabilities are also called behaviors and can be
 Constructors: establish initial state of object’s properties
* Commands: change object’s properties
* Queries: provide responses based on object’s properties

» Example: shops are capable of performing specific actions
* Constructor: be created
* Commands: sell article
* Queries: get total turnover

 Implement capabilities as methods
* Functions and procedures bound to the class

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Object properties (state)

* Properties determine how an object acts

* Properties can be
 Attributes: things that help describe an object
* Components: things that are “part of”” an object
* Associations: things an object knows about, but are not part of that object
* State: collection of all an object’s properties (changes if any property
changes)
* Some properties do not change, e.g., name of the article
* Others do, e.g., quantity of the article

» Example: properties of shop
* Attributes: name, total turnover
» Components: articles
* Associations: e.g. a shop can be associated with a chain of shops

* Implement properties as instance variables
* Variables bound to the class

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Object instantiation

* Object instantiation creates an object instance of a class
* Constructor is the first message: creates the instance

Shop grocery = new Shop("Grocery", articles);

* Reserved word new makes a new object instance, and call its
constructor
* Full name of constructor is given after new; since constructors have
same name as their classes, this specifies the class to instantiate
« Statements defined in constructor are executed when the
constructor is called

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Constructor

* Constructor is a special method that is called whenever a
class is instantiated (created)
* Another object sends a message that calls a constructor

* A constructor is the first message an object receives and cannot be
called subsequently

* Establishes initial state of properties for the object instance
* Constructor has always the same name as class and has no return
type
* If you do not define any constructors for a class, the default
constructor is called

* Default constructor will initialize each instance variable to its
default value

* This is not a good idea — always write your own constructor for
each class and always give each instance variable a value

Lecture #1: Class and Object



Constructors overloading

¢ It’s common to overload constructors
* Define multiple constructors which differ in number and/or types of
parameters
* The compiler determines which constructor to call based on
the number and the type of arguments in a call statement

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Memory management

Shop grocery = new Shop("Grocery", articles); Shop anotherGrocery = grocery;

grocery

Object of shop
“Grocery” in the
memory

Object of shop
“Grocery” in the
memory

grocery

anotherGrocery /

grocery = null; anotherGrocery = null;

grocery —7/ grocery _7/

Object of shop
“Grocery” in the
memory

Object of shop
“Grocery” in the
memory

anotherGrocer:
Y anotherGrocery —7/

* Remember, you are always working with references!

* There are three commonly found modes of memory management
» Static
» Stack-based
* Free (heap-based)

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Static memory mode

* An entity may become attached to at most one run-time
object during the entire execution of the software

* Allocate space for all objects (and attach them to the corresponding
entities) once and for all, at program loading time or at the
beginning of execution

P

=
* Problems

=f
* Recursion is permitted
* Cannot use dynamic data structures

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Stack-based mode

 An entity may at run-time become attached to several objects
in succession, and the run-time mechanisms allocate and
deallocate these objects in last-in, first-out order

* When an object is deallocated, the corresponding entity becomes
attached again to the object to which it was previously attached, if

any
————1— Objects of block i+1
on entry to block i+]
Order of
Order of allocation
(on block entry) ‘7 Objects of block i deallocation
/ (on block exit)
E Memory allocated
y to block i
° P bl on entry to
roolem

» Still cannot use dynamic data structures

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Free (heap-based) mode

* An entity may become successively attached to any number
of objects; the pattern of object creations is usually not
predictable at compile time

* The free mode allows us to create the sophisticated dynamic data
structures

B

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Space reclamation

* The ability to create objects dynamically, raises the question of what to
do when an object becomes unused

* Is it possible to reclaim its memory space, so as to use it again for one or more
new objects in later creation instructions?

« Static mode
* No problem with deallocation of objects

» Stack-based mode

* Block-structured language make things particularly simple: object allocation
occurs at the same time for all entities declared in a given block, allowing the use
of a single stack for a whole program (remember local variables in C language)

* Free mode
* The pattern of object creation is unknown at compile time it is not possible to
predict when a given object may become useless
* For example in C language programmers are forced to use malloc() and
free() to allocate and deallocate the memory

Lecture #1: Class and Object

10



OBJECT-ORIENTED PROGRAMMING

Reachability problem

* We can easily get an unreachable problem after detachment
of the reference

grocery = null;

Object of shop
“Grocery” in the
memory

Object of shop
“Grocery” in the
memory

grocery —————»|

grocery —7/

7

There is no reference to this instance
anymore. This instance becomes
unreachable and useless!

How to get it out from the memory?

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Memory management problem in object-
oriented model

* The problem of memory management arises from the unpredictability
of the operations which affect the set of reachable instances: creation
and detachment

* Such a prediction is possible in some cases, for data structures managed in a
strictly controlled way (e.g. remember linked list in C language)

* Three general attitudes are possible as to objects that become
unreachable

* Casual approach — Ignore the problem and hope that there will be enough
memory to accommodate all objects, reachable or not (hardly usable!)

* Manual reclamation — Ask developers to include in every application an
algorithm that looks for unreachable objects, and give them mechanisms to free
the corresponding memory (e.g. C++ with command delete)

* Automatic garbage collection — Include in the development environment (as
part of the so-called runtime system) automatic mechanisms that will detect and
reclaim unreachable objects (e.g. Java, C#)

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Take care about memory

* “Isay a big NO! Leaving an unreferenced object around is BAD
PROGRAMMING. Object pointers ARE like ordinary pointers — if you
[allocate an object] you should be responsible for it, and free it when
its finished with (didn 't your mother always tell you to put your toys
away when you’d finished with them?).” (1. Stephenson, 1991)

* “An object-oriented program without automatic memory management
is roughly the same as a pressure cooker without a safety valve: sooner

or later the thing is sure to blow up!” (M. Schweitzer, L. Strether,
1993)

Lecture #1: Class and Object

12



