std::bernoulli_distribution

From cppreference.com
< cpp‎ | numeric‎ | random
 
 
 
Pseudo-random number generation
Engines and engine adaptors
Generators
(C++11)
Distributions
Uniform distributions
Bernoulli distributions
bernoulli_distribution
(C++11)
Poisson distributions
Normal distributions
Sampling distributions
Seed Sequences
(C++11)
C library
 
 
Defined in header <random>
class bernoulli_distribution;
(since C++11)

Produces random boolean values, according to the discrete probability function. The probability of true is

P(b|p) =

p if b == true 
1 − p if b == false

Contents

[edit] Member types

Member type Definition
result_type bool
param_type the type of the parameter set, unspecified

[edit] Member functions

constructs new distribution
(public member function)
resets the internal state of the distribution
(public member function)
Generation
generates the next random number in the distribution
(public member function)
Characteristics
returns the p distribution parameter (probability of generating true)
(public member function)
gets or sets the distribution parameter object
(public member function)
returns the minimum potentially generated value
(public member function)
returns the maximum potentially generated value
(public member function)

[edit] Non-member functions

compares two distribution objects
(function)
performs stream input and output on pseudo-random number distribution
(function template)

[edit] Example

#include <iostream>
#include <iomanip>
#include <string>
#include <map>
#include <random>
 
int main()
{
    std::random_device rd;
    std::mt19937 gen(rd());
    // give "true" 1/4 of the time
    // give "false" 3/4 of the time
    std::bernoulli_distribution d(0.25);
 
    std::map<bool, int> hist;
    for(int n=0; n<10000; ++n) {
        ++hist[d(gen)];
    }
    for(auto p : hist) {
        std::cout << std::boolalpha << std::setw(5) << p.first
                  << ' ' << std::string(p.second/500, '*') << '\n';
    }
}

Output:

false ***************
 true ****

[edit] External links

Weisstein, Eric W. "Bernoulli Distribution." From MathWorld--A Wolfram Web Resource.