std::unique_ptr::unique_ptr
From cppreference.com
< cpp | memory | unique ptr
constexpr unique_ptr();
constexpr unique_ptr( nullptr_t ); |
(1) | (since C++11) |
explicit unique_ptr( pointer p );
|
(2) | (since C++11) |
unique_ptr( pointer p, /* see below */ d1 );
|
(3) | (since C++11) |
unique_ptr( pointer p, /* see below */ d2 );
|
(4) | (since C++11) |
unique_ptr( unique_ptr&& u );
|
(5) | (since C++11) |
template< class U, class E >
unique_ptr( unique_ptr<U, E>&& u ); |
(6) | (since C++11) |
template< class U >
unique_ptr( auto_ptr<U>&& u ); |
(7) | (since C++11) |
1) Constructs a
std::unique_ptr
that owns nothing. Value-initializes the stored pointer and the stored deleter. Requires that Deleter
is DefaultConstructible
and that construction does not throw an exception.
2) Constructs a
std::unique_ptr
which owns p, initializing the stored pointer with p and value-initializing the stored deleter. Requires that Deleter
is DefaultConstructible
and that construction does not throw an exception.
3-4) Constructs a
std::unique_ptr
object which owns p
, initializing the stored pointer with p
and initializing a deleter D
as below (depends upon whether D
is a reference type)
a) If
D
is non-reference type A, then the signatures are:
-
unique_ptr(pointer p, const A& d);
(requires thatDeleter
is nothrow-CopyConstructible
) -
unique_ptr(pointer p, A&& d);
(requires thatDeleter
is nothrow-MoveConstructible
)
b) If
D
is an lvalue-reference type A&, then the signatures are:
-
unique_ptr(pointer p, A& d);
-
unique_ptr(pointer p, A&& d);
c) If
D
is an lvalue-reference type const A&, then the signatures are:
-
unique_ptr(pointer p, const A& d);
-
unique_ptr(pointer p, const A&& d);
5) Constructs a
unique_ptr
by transferring ownership from u
to *this. If Deleter
is not a reference type, requires that it is nothrow-MoveConstructible
(if Deleter
is a reference, get_deleter()
and u.get_deleter()
after move construction reference the same value)
6) Constructs a
unique_ptr
by transferring ownership from u
to *this, where u
is constructed with a specified deleter (E
). It depends upon whether E
is a reference type, as following:
a) if
E
is a reference type, this deleter is copy constructed from u
's deleter (requires that this construction does not throw)
b) if
E
is a non-reference type, this deleter is move constructed from u
's deleter (requires that this construction does not throw)
This constructor only participates in overload resolution if all of the following is true:
a)
unique_ptr<U, E>::pointer
is implicitly convertible to pointer
b) U is not an array type
c) Either
Deleter
is a reference type and E
is the same type as D
, or Deleter is not a reference type
and E
is implicitly convertible to D
7) Constructs a
unique_ptr
where the stored pointer is initialized with u.release()
and the stored deleter is value-initialized. This constructor only participates in overload resolution if U*
is implicitly convertible to T*
and Deleter
is the same type as std::default_delete<T>
.
Contents |
[edit] Parameters
p | - | a pointer to an object to manage |
d1,d2 | - | a deleter to use to destroy the object |
u | - | another smart pointer to acquire the ownership from |
[edit] Exceptions
noexcept specification:
noexcept
[edit] Notes
std::unique_ptr<Derived> is implicitly convertible to std::unique_ptr<Base> through the overload (6) (because both the managed pointer and std::default_delete are implicitly convertible)
[edit] Example
Run this code
#include <iostream> #include <memory> struct Foo { // object to manage Foo() { std::cout << "Foo ctor\n"; } Foo(const Foo&) { std::cout << "Foo copy ctor\n"; } Foo(Foo&&) { std::cout << "Foo move ctor\n"; } ~Foo() { std::cout << "~Foo dtor\n"; } }; struct D { // deleter D() {}; D(const D&) { std::cout << "D copy ctor\n"; } D(D&) { std::cout << "D non-const copy ctor\n";} D(D&&) { std::cout << "D move ctor \n"; } void operator()(Foo* p) const { std::cout << "D is deleting a Foo\n"; delete p; }; }; int main() { std::cout << "Example constructor(1)...\n"; std::unique_ptr<Foo> up1; // up1 is empty std::unique_ptr<Foo> up1b(nullptr); // up1b is empty std::cout << "Example constructor(2)...\n"; { std::unique_ptr<Foo> up2(new Foo); //up2 now owns a Foo } // Foo deleted std::cout << "Example constructor(3)...\n"; D d; { // deleter type is not a reference std::unique_ptr<Foo, D> up3(new Foo, d); // deleter copied } { // deleter type is a reference std::unique_ptr<Foo, D&> up3b(new Foo, d); // up3b holds a reference to d } std::cout << "Example constructor(4)...\n"; { // deleter is not a reference std::unique_ptr<Foo, D> up4(new Foo, D()); // deleter moved } std::cout << "Example constructor(5)...\n"; { std::unique_ptr<Foo> up5a(new Foo); std::unique_ptr<Foo> up5b(std::move(up5a)); // ownership transfer } std::cout << "Example constructor(6)...\n"; { std::unique_ptr<Foo, D> up6a(new Foo, d); // D is copied std::unique_ptr<Foo, D> up6b(std::move(up6a)); // D is moved std::unique_ptr<Foo, D&> up6c(new Foo, d); // D is a reference std::unique_ptr<Foo, D> up6d(std::move(up6c)); // D is copied } std::cout << "Example constructor(7)...\n"; { std::auto_ptr<Foo> up7a(new Foo); std::unique_ptr<Foo> up7b(std::move(up7a)); // ownership transfer } }
Output:
Example constructor(1)... Example constructor(2)... Foo ctor ~Foo dtor Example constructor(3)... Foo ctor D copy ctor D is deleting a Foo ~Foo dtor Foo ctor D is deleting a Foo ~Foo dtor Example constructor(4)... Foo ctor D move ctor D is deleting a Foo ~Foo dtor Example constructor(5)... Foo ctor ~Foo dtor Example constructor(6)... Foo ctor D copy ctor D move ctor Foo ctor D non-const copy ctor D is deleting a Foo ~Foo dtor D is deleting a Foo ~Foo dtor Example constructor(7)... Foo ctor ~Foo dtor