I don’t think object-oriented programming is a
structuring paradigm that meets my standards
of elegance.

Edsger W. Dijkstra

OBJECT-ORIENTED PROGRAMMING

Class and Object

Lecture #1

doc. Ing. Martin Tomasek, PhD.

Department of Computers and Informatics
Faculty of Electrical Engineering and Informatics

Technical University of KoSice

2023/2024




OBJECT-ORIENTED PROGRAMMING

Programming concepts

* Structured programming
* Data structures (array, record)
* Program flow structures (sequence, selection, iteration)
* Subroutines (macros, procedures, functions)

* Modular programming
* Separation of concerns
* Definition of interfaces (declaration, implementation)
* Improvement of maintainability

* Object-oriented programming
* Objects (data fields + methods) and their interactions

* Object-oriented techniques (abstraction, information hiding, encapsulation,
inheritance, polymorphism)

* Improvement of code reuse

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Object orientation

* How to deal with complexity?
* Abstraction
* How to define the scope of data inside data structures
(objects)?
* Encapsulation
* How to protect parts of the program from extensive
modification based on design changes?
* Information hiding
* How to reuse existing code with little or no modification?
* Subtyping and inheritance
* How to work with variables (objects) using different types?
* Polymorphism

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Abstraction

* Simplifying complex reality by modeling objects appropriate to
the problem

* An abstraction focuses on the outside view of an object and
separates an object’s behavior from its implementation

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Abstract data types

* Mathematical model for a class of data structures (objects)
that have similar behavior

* Abstract data types simplify the description of abstract
algorithms

* In programming languages usually implemented as data types, data
structures, modules

* One of the formalizing concept of object-oriented
programming

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Abstract data types in object-oriented
programming
* Class

* Defines abstract characteristics of things (objects)
* It includes properties (data fields) and capabilities (functions and
procedures)
* Object
* One version (exemplar) of the class with concrete version of
properties

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Object example: Analysis

* Example: Let’s have a shop that sales articles and keeps the
track of total turnover

* What data structure do we need?
» Shop
* Properties: name, list of articles, total turnover
 Capabilities: create new shop, sell article, get total turnover
* Article
* Properties: name, quantity, price
 Capabilities: create new item, update article quantity (after sale), get price

* How to represent list of articles?
* Dynamic data structures, e.g. linked list

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Object example: Design

* For the design we will use UML

* We design two classes with following characteristics, behaviors and
interactions

Article
Shop

- name: String
- name: String N N N
- articles - quantity: int
- turnover: double

- price: double

+ Shop(name: String, articles: List<Articles>) - " " - -
+ Article(name: String, quantity: int, price: double)
+ sell(article: Article): void . . .
+ update(quantity: int): void
+ getTurnover(): double

+ getPrice(): double

* Data fields inside classes are bound and can be maintained only by the
object of that class itself (encapsulation)

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

What are software objects?

* Building blocks of software systems
* A program is a collection of interacting objects
* Objects cooperate to complete a task
* To do this, they communicate by sending “messages” to each other

* Objects model tangible things
* Ashop
* Anarticle

* Objects model conceptual things
* An inventory
* An order

* Objects model processes

+ Calculating sales report for the shop owner
» Sorting articles in the stock

* Objects have
» Capabilities: what they can do, how they behave
* Properties: features that describe them

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Objects capabilities (behavior)

* Objects’ capabilities allow them to perform specific actions

* Capabilities are also called behaviors and can be
» Constructors: establish initial state of object’s properties
* Commands: change object’s properties
* Queries: provide responses based on object’s properties

* Example: shops are capable of performing specific actions
* Constructor: be created
* Commands: sell article
* Queries: get total turnover

* Implement capabilities as methods
* Functions and procedures bound to the class

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Object properties (state)

* Properties determine how an object acts

* Properties can be
* Attributes: things that help describe an object
* Components: things that are “part of” an object
* Associations: things an object knows about, but are not part of that object
* State: collection of all an object’s properties (changes if any property
changes)
* Some properties do not change, e.g., name of the article
* Others do, e.g., quantity of the article

» Example: properties of shop
* Attributes: name, total turnover
» Components: articles
* Associations: e.g. a shop can be associated with a chain of shops

* Implement properties as instance variables
* Variables bound to the class

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Object instantiation

* Object instantiation creates an object instance of a class
* Constructor is the first message: creates the instance

Shop grocery = new Shop("Grocery", articles);

* Reserved word new makes a new object instance, and call its
constructor
* Full name of constructor is given after new; since constructors have
same name as their classes, this specifies the class to instantiate

» Statements defined in constructor are executed when the
constructor is called

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Constructor

* Constructor is a special method that is called whenever a
class is instantiated (created)
 Another object sends a message that calls a constructor

* A constructor is the first message an object receives and cannot be
called subsequently

* Establishes initial state of properties for the object instance
* Constructor has always the same name as class and has no return
type
* If you do not define any constructors for a class, the default
constructor is called

* Default constructor will initialize each instance variable to its
default value

* This is not a good idea — always write your own constructor for
each class and always give each instance variable a value

Lecture #1: Class and Object



Constructors overloading

* [t’s common to overload constructors
* Define multiple constructors which differ in number and/or types of

parameters
* The compiler determines which constructor to call based on
the number and the type of arguments in a call statement

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Memory management

Shop grocery = new Shop("Grocery", articles); Shop anotherGrocery = grocery;

2K

Object of shop
“Grocery” in the
memory

grocery

Object of shop
“Grocery” in the
memory

grocery

anotherGrocery /

grocery = null; anotherGrocery = null;

grocery —7/ grocery _7/

Object of shop
“Grocery” in the
memory

Object of shop
“Grocery” in the
memory

anotherGrocer:
Y anotherGrocery —7/

* Remember, you are always working with references!
* There are three commonly found modes of memory management

* Static
* Stack-based
* Free (heap-based)

Lecture #1: Class and Object




OBJECT-ORIENTED PROGRAMMING

Static memory mode

* An entity may become attached to at most one run-time
object during the entire execution of the software

* Allocate space for all objects (and attach them to the corresponding
entities) once and for all, at program loading time or at the
beginning of execution

.

=
* Problems

=f
* Recursion is permitted
* Cannot use dynamic data structures

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Stack-based mode

 An entity may at run-time become attached to several objects
in succession, and the run-time mechanisms allocate and
deallocate these objects in last-in, first-out order

* When an object is deallocated, the corresponding entity becomes
attached again to the object to which it was previously attached, if
any ;

%/Objec(sofblockz‘—l 1

‘ Memory allocated
on entry to block i+]

Order of
Objects of block i deallocation
7 (on block exit)

Order of allocation
(on block entry)

¥

(1AL

Memory allocated
on entry to block i

* Problem
» Still cannot use dynamic data structures

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Free (heap-based) mode

* An entity may become successively attached to any number
of objects; the pattern of object creations is usually not
predictable at compile time

* The free mode allows us to create the sophisticated dynamic data
structures

=

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Space reclamation

* The ability to create objects dynamically, raises the question of what to
do when an object becomes unused

* Is it possible to reclaim its memory space, so as to use it again for one or more
new objects in later creation instructions?

« Static mode
* No problem with deallocation of objects

» Stack-based mode

* Block-structured language make things particularly simple: object allocation
occurs at the same time for all entities declared in a given block, allowing the use
of a single stack for a whole program (remember local variables in C language)

* Free mode
* The pattern of object creation is unknown at compile time it is not possible to
predict when a given object may become useless
* For example in C language programmers are forced to use malloc() and
free() to allocate and deallocate the memory

Lecture #1: Class and Object

10



OBJECT-ORIENTED PROGRAMMING

Reachability problem

* We can easily get an unreachable problem after detachment
of the reference

grocery = null;

Object of shop
“Grocery” in the
memory

Object of shop
“Grocery” in the
memory

grocery

grocery —7/

_—7

There is no reference to this instance
anymore. This instance becomes
unreachable and useless!

How to get it out from the memory?

Lecture #1: Class and Object

OBJECT-ORIENTED PROGRAMMING

Memory management problem in object-
oriented model

* The problem of memory management arises from the unpredictability
of the operations which affect the set of reachable instances: creation
and detachment

* Such a prediction is possible in some cases, for data structures managed in a
strictly controlled way (e.g. remember linked list in C language)

* Three general attitudes are possible as to objects that become
unreachable

* Casual approach — Ignore the problem and hope that there will be enough
memory to accommodate all objects, reachable or not (hardly usable!)

* Manual reclamation — Ask developers to include in every application an
algorithm that looks for unreachable objects, and give them mechanisms to free
the corresponding memory (e.g. C++ with command delete)

* Automatic garbage collection — Include in the development environment (as
part of the so-called runtime system) automatic mechanisms that will detect and
reclaim unreachable objects (e.g. Java, C#)

Lecture #1: Class and Object



OBJECT-ORIENTED PROGRAMMING

Take care about memory

* “I say a big NO! Leaving an unreferenced object around is BAD
PROGRAMMING. Object pointers ARE like ordinary pointers — if you
[allocate an object] you should be responsible for it, and free it when
its finished with (didn t your mother always tell you to put your toys
away when you’d finished with them?).” (1. Stephenson, 1991)

* “An object-oriented program without automatic memory management
is roughly the same as a pressure cooker without a safety valve: sooner
or later the thing is sure to blow up!” (M. Schweitzer, L. Strether,
1993)

Lecture #1: Class and Object

12



